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Abstract

I study the transmission of distortionary monetary policy shocks under incom-

plete markets. Using a heterogeneous agents general equilibrium model, I demon-

strate that there is a unique fundamental stationary equilibrium, where the distri-

bution of monetary holdings mirrors productivity, but infinite non-fundamental

stationary equilibria for a given monetary base in the presence of a frictionless

bonds market. Only financially constrained economies return to the fundamental

stationary equilibrium after an unforeseeable monetary shock that redistributes

monetary holdings, with aggregate effects on output and endogenous price stick-

iness along the transition. Financially developed economies display smaller dis-

tortions and negligible effects on aggregate variables, but monetary shocks create

hysteresis by making the consequences of idiosyncratic shocks permanent. While

partial market completion enhances welfare by enabling nearly perfect risk shar-

ing, this improvement is limited by the irreversibility of the idiosyncratic shocks.

Ultimately, distributional effects are irrelevant for monetary policy transmission

to aggregate variables in developed economies but critical in poorer countries.
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1 Introduction

There is growing evidence that monetary policy shocks produce distributional effects,

sparking a debate over their relevance to central banks’ choices. These shocks can

affect relative income, benefit debtors at creditors’ expense, and change asset prices,

redistributing wealth between asset holders and non-holders. This is important given

that, even in the U.S., only 21% of households held stocks directly, and only 1.1%

held bonds as of 2022 according to the Survey of Consumer Finances (SCF). Moreover,

households that own stocks and bonds,1 directly or indirectly, are approximately twice

as rich as the average. Although credit markets could mitigate these wealth shocks

through risk-sharing, access remains limited, as roughly 20% of U.S. families lacked

a credit card and 10% had at least one loan application rejected in the year before the

SCF survey.

These distributional effects shape the transmission of monetary shocks. As Fried-

man (1969) noted, the random re-shuffling of money prevents an immediate return

to the initial equilibrium allocations, even in a frictionless economy. Agents made

richer by the shock would smooth consumption, and incomes would adjust to restore

the long-run equilibrium. As a result, the resulting transition path should be slug-

gish, directly affecting policy effectiveness within the relevant monetary policy hori-

zon. Along the transition, temporary shifts in consumption and income should arise,

especially in the absence of financial tools enabling risk sharing. I investigate these

claims by studying the transmission of distortionary monetary policy shocks and how

financial development — in the form of access to credit — affects post-shock dynamics.

I develop a tractable general equilibrium model featuring a cash-in-advance fric-

tion and a monopolistically competitive goods market. There is perfect foresight and

costless price adjustment. To analyze how the redistribution of monetary holdings af-

fects inequality, I introduce productivity heterogeneity, which generates dispersion in

monetary holdings, consumption, output, and prices. Then, a monetary shock gen-

erates a wedge in money holdings between equally productive agents. This model

allows me to show that the introduction of one-period bonds suffices to significantly

alter the post-shock dynamics by enabling risk-sharing, which largely offsets distribu-

tional effects in consumption and renders money nearly neutral in the aggregate.

First, I establish the existence of a unique fundamental stationary equilibrium,

characterized by a wealth distribution that mirrors the productivity distribution, given

the market structure and consumer preferences. However, for a given monetary base,

any redistribution of monetary holdings across agents is compatible with a stationary

1Excluded retirement funds, savings, and foreign bonds.
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equilibrium with borrowing from a frictionless bonds market. This is because agents

with insufficient assets relative to their productivity become indebted and roll their

debt indefinitely. Likewise, entrepreneurs whose assets are too high given their in-

come decide to permanently maintain savings and receive interest payments. This

way, one-period bonds work as perpetuities. Although these findings apply to any

extrinsic wealth redistribution, monetary shocks provide a natural application.

Then, I investigate the dynamics after a one-time unforeseeable monetary shock

that happens to an economy at the fundamental stationary equilibrium. I show that the

distributional effects of monetary shocks indeed induce a more sluggish and distorted

return to the fundamental stationary equilibrium in the absence of access to credit

markets. On the other hand, and contrary to Friedman’s hypothesis, if there is full

enforcement of debt repayments, the economy does not return to the initial allocations,

and the induced differences in monetary holdings become permanent. This implies

that the effect of these shocks on wealth inequality can be persistent.

The model is closely related to the financial segmentation channel, proposed by

Williamson (2008). In this paper, he assumes that households are either connected or

unconnected to financial markets, with no possibility of moving between groups. By

connected, he means that these households operate frequently in financial markets and,

hence, are the first to be affected by monetary shocks. This heterogeneity is well-

illustrated by the aforementioned low levels of financial asset ownership observed in

the U.S. Throughout, I will use the same classification adopted by Williamson (2008).

For a sufficiently large positive (negative) monetary shock, connected households’

consumption increases (decreases) relative to the unconnected, but the revenues of

the latter are higher (lower). This formalizes the mechanism proposed by Friedman

(1969), leading to endogenous finite-time convergence to the long-run equilibrium in

economies without borrowing. Unconnected (connected) households gradually ab-

sorb money that was initially idle, linking portfolio-related distributional effects to the

more indirect, general equilibrium, income ones. As a result, consumption and wealth

inequality move in the opposite direction of income inequality after the shock.

I allow the whole productivity distribution between connected and unconnected

agents to differ. Since connected agents are more productive on average in the data,

this allows me to capture a novel dimension of the disparity between both groups. If

the monetary shock benefits, on average, poorer agents, it reduces inequality. How-

ever, the shock also creates a wedge between connected and unconnected agents with

the same productivity. This wedge shrinks in the presence of a bonds market, which

unambiguously improves welfare by allowing for risk sharing. Moreover, I show that
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allocative efficiency fluctuates if the connectedness status is correlated with produc-

tivity, as the beneficiaries from the shock cut their labor due to the wealth effect.

The paper’s primary contribution is to examine how wealth redistribution unre-

lated to fundamentals affects the transmission of monetary shocks. I study transitional

dynamics between stationary equilibria through endogenous mechanisms, offering a

novel analysis of convergence properties that extends beyond the previous approaches

in the literature. Moreover, I show that introducing a simple one-period bond fun-

damentally alters the transmission and improves welfare, by mitigating distortions

through risk-sharing and resolving the idle cash balances problem. However, it leads

to hysteresis in post-shock monetary holdings. Additionally, the model generates real

effects and endogenous price stickiness through two novel mechanisms: (i) uncon-

nected agents set lower prices than connected agents to restore real balances, and (ii)

connected agents lower production and, thus, marginal costs after a positive shock.

These findings highlight differences between economies with well- and poorly-

developed credit markets. In less developed economies, monetary policy induces

stronger distributional effects on consumption and more output volatility. In con-

trast, widespread access to credit markets makes distributional effects irrelevant to

monetary policy transmission to aggregate variables. Broader access to financial asset

markets exposes more people to monetary policy risk but can make shocks less distor-

tionary if sufficiently widespread. This underscores the need for robust credit markets

to ease distortions from monetary shocks while balancing short-term stabilization with

long-term policies to address inequality.

Lastly, I conduct a sensitivity analysis. First, I examine a negative monetary shock

and CRRA utility, followed by the impact of different Frisch elasticities on shock trans-

mission. I then vary access to financial asset markets, showing that higher access: (i)

dilutes post-shock distortions under money-supply targeting, but (ii) induces an in-

verse U-shaped effect of the shock on distributional distortions under interest rate

targeting. I then derive implications for futures markets. Next, I show that transi-

tion dynamics depend on the relative size of individual vs. aggregate shocks and that

the fraction of connected agents influences transition length in the bondless economy.

Lastly, I analyze collateral constraints.

The paper is organized as follows. Section 2 develops the baseline model and an-

alyzes its stationary equilibria. Section 3 examines post-shock dynamics without a

bonds market, then introduces bonds, studies market equilibrium and the zero interest

rate case, and conducts a welfare analysis. Section 4 presents the sensitivity analysis.

Lastly, section 5 concludes. All proofs are presented in Appendix A, while Appendix

B contains further graphs, and Appendix C, outstanding tables.
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1.1 Related Literature

This paper contributes to two strands of the literature. First, it relates to the literature

on the distributional effects of monetary policy, which shows that monetary shocks

affect agents based on their income compositions, portfolios, financial market par-

ticipation, and skill level (Hohberger et al., 2020; Coibion et al., 2017; Dolado et al.,

2021). Distributional effects may also arise from the heterogeneity of price adjustment

(Cravino et al., 2020; Baqaee et al., 2022), risk sharing mechanisms (Chiu and Molico,

2010; Rocheteau et al., 2018), and the regressive interaction between inflation tax and

economies of scale in credit transactions (Erosa and Ventura, 2002). The empirical

evidence on net effects remains mixed, with studies linking contractionary monetary

shocks to rising inequality (Coibion et al., 2017; Furceri et al., 2018), while others find

the opposite (Davtyan, 2016; Montecino and Epstein, 2015).

A key distinction in the literature is between direct and indirect, general equilib-

rium, transmission channels (Ampudia et al., 2018). Portfolio revaluations are a signif-

icant direct effect of monetary policy in several empirical studies (Doepke and Schnei-

der, 2006; Saiki and Frost, 2014; Ampudia et al., 2018; Auclert, 2019). There is also

substantial evidence in support of indirect income-related effects on wages, capital re-

turns, skill premium, or employment fluctuations (Gornemann et al., 2016; Coibion

et al., 2017; Dolado et al., 2021; Casiraghi et al., 2018). One of my contributions lies in

integrating these direct and indirect channels by modeling the latter as an endogenous

response to the former, as suggested in Friedman (1969).

Two papers closely related to mine are Williamson (2008) and Grossman and Weiss

(1983). My model differs from Williamson’s by assuming away goods market seg-

mentation2 and perfect competition while allowing agents to save money. This endo-

genizes the convergence process and enables the study of its properties and mecha-

nisms. I also generalize his model by introducing borrowing between connected and

unconnected agents,3 keeping the absence of risk-sharing as a special case. Grossman

and Weiss (1983) model open market operations through staggered bank withdrawals,

generating a gradual transition. My framework, in contrast, allows for endogenous

convergence, output responses, and risk-sharing, offering a broader perspective on

monetary policy’s distributional effects.

2In his paper, connected agents trade primarily among themselves in a competitive goods market,

while unconnected agents operate in a partially separate market. Convergence to the stationary equilib-

rium happens asymptotically because money flows between submarkets, as matches across submarkets

occur with some exogenous probability.
3In Williamson’s framework, agents do not keep any savings and, although a credit market exists,

only connected agents can access it.

5



Secondly, I contribute to the literature on incomplete markets, particularly on the

role of debt. In the New-Monetarist tradition (Kiyotaki and Wright, 1993; Lagos and

Wright, 2005), imperfect credit markets make money essential for transactions. If some

agents hold idle balances while others are liquidity-constrained, borrowing could re-

allocate liquidity from low- to high-marginal utility agents (Berentsen et al., 2007). I

examine how this reallocation mechanism influences the transmission of monetary

shocks. Prior work in this tradition shows that idiosyncratic trading histories produce

a non-degenerate money distribution, allowing monetary policy to act as risk-sharing

by redistributing liquidity (Chiu and Molico, 2010; Rocheteau et al., 2018; Chiu and

Molico, 2021). In contrast, my framework, which does not model monetary shocks as

lump-sum transfers, produces the opposite result.

This paper also relates to Eggertsson and Krugman (2012), where a tightening of

borrowing requirements generates distributional effects and depresses aggregate de-

mand. In both models, the liquidity provided to constrained households eases distor-

tions. Unlike theirs, my framework considers external monetary shocks, focusing on

credit markets’ role in risk-sharing and its implications for monetary policy transmis-

sion. Furthermore, access to liquidity through a frictionless credit market significantly

completes the market as in Telmer (1993), practically undoing the heterogeneity in con-

sumption. I extend this literature by characterizing post-shock dynamics and showing

that financial development while improving welfare, can also introduce hysteresis in

monetary holdings. This effect is, to the best of my knowledge, novel to the literature.

2 The Model

Consider an economy with a continuum of entrepreneurs with unit mass, who differ

in their time-invariant productivity, z. The productivity follows a cumulative distri-

bution function F(·). Every entrepreneur produces an intermediate good through her

own work and derives utility from the consumption of the final good. There is also

a final good firm, which operates in a competitive market and produces a composite

final good out of the intermediate goods produced by the entrepreneurs. Moreover, I

assume that there is a market for riskless one-period pure-discount bonds.

I assume that entrepreneurs have identical preferences. Moreover, as in Williamson

(2008), I define connected agents as those who frequently trade in financial markets,

being, therefore, directly affected by monetary shocks. They correspond to a fraction

η ∈ (0, 1) of the population, and their productivity is distributed according to the

c.d.f. Fc(·). Unconnected agents are, naturally, affected indirectly by monetary shocks

and correspond to a fraction 1 − η of the population. Their productivity is distributed
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according to the c.d.f. Fu(·). Naturally, F(z) = ηFc(z) + (1 − η)Fu(z). Finally, I denote

ηi = η for i = c and ηi = 1 − η for i = u. For simplicity, I assume a common support

for these distributions, and that connectedness status is fixed for each agent.

The timing of the model goes as follows:

1. All bonds, bit(z), purchased in the previous period reach maturity;

2. The entrepreneur with productivity z and connectedness status i ∈ {c, u} starts

with m−
it (z) units of money, and connected agents may receive an unanticipated

and unforeseeable transfer (tax) τm−
ct(z) from the government, financed through

money creation (destruction). Thus, mit(z) = (1+ 1i=cτ)(m−
it (z) + bit(z)), where

1i=c = 1 when the agent is connected, and 1i=c = 0 otherwise;

3. The entrepreneur sets a price pit(z) for the good they produce. Given these

prices, the final goods firm buys on credit the output of each entrepreneur, yit(z),

and produces thereby a composite good Yt;

4. Each entrepreneur decides, given the final good price, Pt, and bond price, qt, how

much of mit(z) to spend on consumption, Cit(z), how much to save as idle cash,

sit(z) ≥ 0, and how much to spend on bonds. Alternatively, they can sell bonds.

5. The final goods firm pays the entrepreneurs for the purchases made.

6. Sales revenues and the money unspent in the period will sum up to m−
i,t+1(z).

As usual, if the bond is bought, bit(z) > 0; if it is sold, bit(z) < 0. Moreover,

monetary shocks are assumed to become immediately known by everyone whenever

they take place, that is, before agents make any pricing and production decision for

that period. The timing also implies that entrepreneurs cannot benefit from current sales

because purchases are only paid for at the end of the period. Thus, there is a cash-in-

advance (CIA) friction. Moreover, there is imperfect competition in the intermediate

goods market, which allows for pricing decisions. I also assume that the monetary

shock each entrepreneur receives is proportional to their current monetary holdings.4

Importantly, as long as η < 1, we do not have helicopter drops of money.

Since qt > 1 is not possible, si,t(z) > 0 can only happen if: 1) qt = 1 or 2) the bonds

market is shut down. I will also assume, henceforth, that, if the nominal interest rate

is equal to zero, all the savings will still take place through the bonds market. Hence,

4I make this assumption for two reasons. First, it is fairly tractable given the pre-existing hetero-

geneity in cash holdings. Second, it seems more plausible to assume that monetary shock affects agents

proportionally. For example, if a fall in the interest rate increases the price of a connected agent’s assets,

this valuation shock should be proportional to their asset holdings.
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savings will never take the form of idle money if agents can buy and sell bonds. This

can be rationalized as being the only choice that is robust to small upward trembles in

the interest rate, which would always produce sit(z) = 0 for any arbitrary z ∈ [z, z].

An entrepreneur with productivity z and connectedness status i ∈ {c, u} solves:

max
{Cit(z),m−

i,t+1(z),hit(z),pit(z),bi,t+1}∞
t=0

∞

∑
t=0

βt
[

u(Cit(z))− γ
hit(z)1+ζ

1 + ζ

]
(1)

subject to PtCit(z) + qtbi,t+1 ≤ mit(z) (2)

m−
i,t+1(z) + PtCit(z) + qtbi,t+1(z) ≤

mit(z) + pit(z)yit(z) (3)

mi,t+1(z) = m−
i,t+1(z) + bi,t+1(z) (4)

yit(z) = zhit(z) ≥ D(pit(z), Pt, Yt) (5)

bi,t+1(z) ≥ −lt(z, mit(z)) (6)

Cit(z) ≥ 0 (7)

where hit(z) is labor; D(pit(z), Pt, Yt) is the demand faced given the chosen price,

pit(z); and lt(z, mit(z)) ≥ 0 is the borrowing limit. Moreover, let Rit(z) := pit(z)yit(z)

be the entrepreneur’s revenue. As usual, I assume that the utility function satis-

fies u ∈ C2, u′(·) > 0, and u′′(·) < 0. I assume isoelastic labor disutility for the

sake of tractability and that ζ ≥ 0. Also for simplicity, I assume linear technology,

i.e. yit(z) = zhit(z). Moreover, notice that transfers enter implicitly in the CIA con-

straint (2), since, if an agent receives the transfers at the beginning of time t, mct(z) =

(1 + τ)m−
ct(z). Lastly, given that monetary shocks are unforeseeable, agents assume

that m−
i,t+1(z) = mi,t+1(z). The final good’s firm faces the static problem:

max
{yD

it (z)}z∈[z,z],i∈{c,u}

Yt =

 ∑
i∈{c,u}

ηi

∫ z

z
yD

it (z)
ϵ−1

ϵ dFi(z)

 ϵ
ϵ−1

(8)

subject to PtYt = ∑
i∈{c,u}

ηi

∫ z

z
pit(z)yD

it (z)dFi(z) (9)

yt(z) ≥ 0 ∀z ∈ [z, z] (10)

where yD
it (z) is the demand for the intermediate good of the entrepreneur with produc-

tivity z and connectedness status i ∈ {c, u}. Moreover, I assume that ϵ > 1. Finally, I

define T as the set of periods at which the economy is in a particular equilibrium path,

and t0 := min T. The equilibrium path of this economy is defined as follows:

Definition 1 (Equilibrium path). An equilibrium path is a series of intermediate goods, fi-

nal good and bond prices {{pit(z)}z∈[z,z], Pt, qt}i∈{c,u},t∈T, individual consumption bundles
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{Cit(z)}z∈[z,z],i∈{c,u},t∈T, intermediate and final good outputs {{yit(z)}z∈[z,z], Yt}i∈{c,u},t∈T,

individual labor {hit(z)}z∈[z,z],i∈{c,u},t∈T, individual monetary holdings and monetary base

{{mit(z)}z∈[z,z], Mt}i∈{c,u},t∈T, and net bonds holdings {bi,t+1(z)}z∈[z,z],i∈{c,u},t∈T such that,

for every t ∈ T:

1. Given {qt, Pt}t∈T and the initial mt0(z), {Cit(z), pit(z), yit(z), hit(z), bi,t+1(z)}t∈T

solve the problem (1) of the entrepreneur with z ∈ [z, z] and i ∈ {c, u};

2. Given prices for the intermediate and final goods, {{pit(z)}z∈[z,z], Pt}i∈{c,u},t∈T, inter-

mediate goods demand and final good output {{yD
it (z)}z∈[z,z], Yt}i∈{c,u},t∈T solve the

problem (8) of the final good firm;

3. The intermediate goods markets clear, i.e. yD
it (z) = yit(z) for z ∈ [z, z], i ∈ {c, u};

4. The final good’s market clears, i.e. ∑i∈{c,u} ηi
∫ z

z Cit(z)dFi(z) = Yt;

5. The bonds market clears, i.e. ∑i∈{c,u} ηi
∫ z

z bi,t+1(z)dFi(z) = 0;

6. The monetary base is owned by entrepreneurs, i.e. ∑i∈{c,u} ηi
∫ z

z mit(z)dFi(z) = Mt.

2.1 Solution

The solution to the problem of the final good firm, (8), takes the standard form:

D(pit(z), Pt, Yt) =

(
pit(z)

Pt

)−ϵ

Yt ∀z ∈ [z, z] (11)

and the final good price is given by:

Pt =

 ∑
i∈{c,u}

ηi

∫ z

z
pit(z)1−ϵdFi(z)

 1
1−ϵ

, (12)

which I will, henceforth, refer to as aggregate price. The entrepreneur with productiv-

ity z ∈ [z, z] and connectedness status i ∈ {c, u} follows the consumption schedule:

Cit(z)


= (u′)−1

(
β Pt

Pt+1
u′(Ci,t+1(z))

)
if si,t(z) > 0

= mit(z)
Pt

if si,t = 0 and bi,t+1(z) = 0

≤ (u′)−1
(

β
qt

Pt
Pt+1

u′(Ci,t+1(z))
)

otherwise

where (u′)−1(·) is the inverse of the marginal utility function. This function is well

defined because u′(·) is injective and continuous. The cases above correspond, respec-

tively, to 1) partial depletion (that is, the monetary holdings are not fully spent) with
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idle cash, 2) full depletion (the consumer spends all her money currently), and 3) par-

tial depletion with non-zero bond holdings. Notice that the first case can only happen

if the bonds market is shut down, which corresponds to a fully imperfect financial sys-

tem. Moreover, we obtain a strict inequality in the third case if, and only if, (6) binds.

Furthermore, the price chosen by the entrepreneur is given by:

pit(z) =
(

ϵ

ϵ − 1

)
︸ ︷︷ ︸

(i)

γhit(z)ζ

z︸ ︷︷ ︸
(ii)

Pt+1

βu′(Ci,t+1(z))︸ ︷︷ ︸
(iii)

(13)

This equation implies that there is a markup, (i), over marginal costs, (ii), and a

forward-looking component, (iii), to pricing decisions. To understand the intuition,

notice that revenues affect how much money the entrepreneur carries to the next pe-

riod. The value of this money is the value of relaxing the future budget constraint,

which is directly related to the marginal utility and the aggregate price in the next

period. Whenever consumption will be large in the future, the value of relaxing the

next period’s budget constraint is lower. Hence, the agent will choose a relatively

high price to get lower current labor disutility. Furthermore, the value of relaxing the

budget constraint in the future is decreasing on future aggregate prices.

Now, I define the revenue of an arbitrary entrepreneur relative to the average as:

θit(z) :=
pit(z)D(pit(z), Pt, Yt)

PtYt
=

(
pit(z)

Pt

)1−ϵ

, (14)

which can be interpreted as the equivalent of a market share in the continuous case,

since Rit(z) = θit(z)Mt. It takes values θit(z) ∈ (0, 1) if the revenue of the entrepreneur

with productivity z ∈ [z, z] and connectedness status i ∈ {c, u} is below the average

revenue, θit(z) = 1 if it is equal to average, and θit(z) > 1 if it is larger. I study now

the stationary equilibria of this economy.

2.2 The Stationary Equilibrium

I now define a stable price stationary equilibrium. The term “stable price” aims to

restrict attention to stationary equilibria where the monetary base is constant. In these

monetary equilibria, mit(z) = mi,t+1(z) and pit(z) = pi,t+1(z) for every z ∈ [z, z] and

i ∈ {c, u}, Mt = Mt+1 and Pt = Pt+1. Let TS be the set of periods in which the

economy is at this kind of equilibrium. I define it as follows:

Definition 2 (Stable price stationary equilibrium). A stable price stationary equilibrium

for this economy is a series of prices {{pit(z)}z∈[z,z], Pt, qt}i∈{c,u},t∈TS , consumption, la-

bor and output allocations {{Cit(z), hit(z), yit(z)}z∈[z,z]}, Yt}i∈{c,u},t∈TS , and bond holdings
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{bi,t+1(z)}z∈[z,z],i∈{c,u},t∈TS which, given τ = 0 for and t ∈ TS, solve (1) and (8) and make

mit(z) = mi,t+1(z) for every z ∈ [z, z] and i ∈ {c, u} and, thus, Mt = Mt+1.

Notice that the above definition implies that real allocations and relative prices are

constant in all periods in stable price stationary equilibria. Moreover, since all the

stationary equilibria studied throughout the paper are stable price, I will, henceforth,

call them simply “stationary equilibria”. As will be shown in Proposition 1, there are

infinite such equilibria that are compatible with a given monetary base, Mt. I will,

therefore, refine this concept further by defining fundamental stationary equilibria as:

Definition 3 (Fundamental stationary equilibrium). A fundamental stationary equilib-

rium for this economy is a stable price stationary equilibrium where mit(z) = Rit(z) for every

z ∈ [z, z], i ∈ {c, u} and t ∈ TS.

A fundamental stationary equilibrium is a stationary equilibrium where differ-

ences in monetary holdings across agents reflect differences in their fundamentals,

which boil down to differences in productivity given our assumptions. Intuitively,

agents are just as rich as their capacity to make money allows. As a result, for every

z ∈ [z, z] and t ∈ TS, mct(z) = mut(z), that is, connected and unconnected agents

with the same productivity have the same monetary holdings. The proposition below

confirms that such a fundamental stationary equilibrium exists and is unique.

Proposition 1. There is a unique fundamental stationary equilibrium, which requires that

bi,t+1(z) = 0 for all z ∈ [z, z], i ∈ {c, u} and t ∈ TS. Moreover, given the fundamental

stationary equilibrium distribution of monetary holdings, it is the only possible equilibrium.

Lastly, for any function mct(·) > 0 and mut(·) > 0 defined over the domain [z, z̄] and sat-

isfying ∑i∈{c,u} ηi
∫ z

z mit(z)dFi(z) = Mt, if lt(z, mit(z)) = Rit(z) for all z ∈ [z, z] and

i ∈ {c, u}, there is a unique (non-fundamental) stationary equilibrium with borrowing com-

patible with it. This equilibrium requires qt = β for every t ∈ TS.

Apart from the uniqueness of the fundamental stationary equilibrium, Proposition

1 implies that infinite non-fundamental stationary equilibria exist for any given mone-

tary base, as long as the borrowing limit requires only that agents can repay their debt

at the beginning of the next period5. Any distribution of money is made permanent

through borrowing. However, the equilibrium is unique for any given distribution.

Thus, without financial frictions, no mechanism ensures convergence to a fundamen-

tal stationary equilibrium.

5This is a sufficient condition. In Subsection 4.9, I will show that a tighter collateral constraint can

often produce the same result.
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Intuitively, indebted agents indefinitely roll over their debt and pay the interest

with their sales revenue. Hence, these one-time bonds work like perpetuities. To put it

simply, under a borrowing limit that ensures the capacity of debt repayment in the next

period, consumption should either decrease, increase, or stay constant for all agents

according to their Euler equation. The next section investigates the case of an MIT

monetary shock to an economy starting at the fundamental stationary equilibrium.

3 Transition Dynamics

In what follows, I consider an economy that starts at the fundamental stationary equi-

librium at t = 0 and receives an MIT monetary shock at t = 1 in the fashion described

at the beginning of Section 2. Whenever I refer to the stationary equilibrium, I use the

notation X0 for X ∈ {Y, P, M} and x0(z) for x ∈ {m, b, C, p, y, h, R, θ}, which does not

depend on connectedness status by the definition of fundamental stationary equilib-

rium. I start by studying a baseline economy with perfect financial frictions and only

after allow the bonds market to become operational to study how the transmission of

the shock is affected by financial development.

3.1 Baseline Economy

In the baseline economy, I assume that no borrowing can take place, i.e., lt(z, mit(z)) =

0 for z ∈ [z, z] and i ∈ {c, u}. This amounts to shutting off the bond market completely.

I assume that the central bank introduces (withdraws) ητMc0 > 0 (< 0) units of money

in the economy at t = 1, where Mc0 :=
∫ z̄

z m0(z)dFc(z) is the average monetary hold-

ings of connected agents in the stationary equilibrium. Moreover, let τA := ητMco/M0

be the proportional aggregate shock. I also define MC
t as the money in circulation at

time t, that is, the amount of money that is demanded in the economy for transaction

motive, and Mt = (1 + τA)M0 is the monetary base. I now consider an economy that

receives a monetary shock operated through helicopter drops.

3.1.1 Helicopter Drops Of Money

When helicopter drops take place, each agent gets a proportional τH = τA over their

monetary holdings. It is easy to see that the only possible equilibrium is one in which

all agents fully deplete their money. Essentially, relative monetary holdings are not

distorted by the shock since every agent gets the same proportional shock. Thus, the

economy goes immediately to the new fundamental stationary equilibrium, in which

12



the monetary base is Mt = (1 + τA)M0 for t ∈ {1, 2, ...}. The corollary below formal-

izes that. The proof can be found in A.

Corollary 1.1. After helicopter drops of money, the economy goes immediately to the new

fundamental stationary equilibrium.

Since all agents fully deplete their resources, prices are given by:

PH
t = (1 + τA)P0 and pH

t (z) = (1 + τA)p0(z) (15)

for z ∈ [z, z], i ∈ {c, u} and t = {1, 2, ...}, where the H superscript refers to the “heli-

copter drops equilibrium”, and consumption is identical to the consumption level in

the initial stationary equilibrium level, that is, CH
it (z) = C0(z) for t = {1, 2, ...}. Thus, a

monetary shock implemented through helicopter drops is neutral, since prices imme-

diately rise/fall uniformly and enough to put the economy at the new fundamental

stationary equilibrium already at t = 1.

3.1.2 Uneven Access To The New Money

Now, I assume that the connected agents are the first to have their monetary holdings

affected by the monetary shock. With some abuse of notation, I denote the agents who

are made richer, in relative terms, by the monetary shock as high-cash and the ones that

are made relatively poorer as low-cash. I denote the former with subscript h and the

latter with subscript l. Naturally, if τ > 0, then h = c, mh1(z) = mc1(z) = (1+ τ)m0(z)

and ml1(z) = mu1(z) = m0(z) for any arbitrary z ∈ [z, z]; whereas h = u, ml1(z) =

mc1(z) = (1 + τ)m0(z) and mh1(z) = mu1(z) = m0(z) when τ < 0. Moreover, I define:

UGAP
t =

∑i∈{c,u} ηi
∫ z

z zϵ−1 u′(Cit(z))ϵ−1

hit(z)ζ(ϵ−1) dFi(z))

∑i∈{c,u} ηi
∫ z

z zϵ−1 u′(Ci0(z))ϵ−1

hi0(z)ζ(ϵ−1) dFi(z)


1

ϵ−1

, (16)

which captures the deviation, at a given moment, of a kind of weighted mean of the ra-

tio of marginal utility of consumption over marginal labor disutility relative to the sta-

tionary equilibrium value, where the weights are a function of productivity. This ex-

pression is well-defined since the utility function is assumed to be equal for all agents,

allowing for comparison across them. It will be useful to also define an analogous

individual-level measure as:

UGAP
it (z) =

 zϵ−1 u′(Cit(z))ϵ−1

hit(z)ζ(ϵ−1)

zϵ−1 u′(Ci0(z))ϵ−1

hi0(z)ζ(ϵ−1)


1

ϵ−1

. (17)

In the following proposition, I characterize the dynamics after the shock.
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Proposition 2. After a monetary shock, there is a certain time T < ∞ in which the economy

converges to the new fundamental stationary equilibrium. For t = {T, T + 1, ...}, pit(z) =

pH(z, (1 + τA)M0) for z ∈ [z, z] and i ∈ {h, l}, Pt = PH((1 + τA)M0), and Yt = Y0.

Moreover, for t = {T + 1, T + 2, ...}, Cit(z) = Ci0(z) and mit(z) = (1 + τA)m0 for all

z ∈ [z, z] and i ∈ {h, l}. Along the transition, that is, for t = {1, ..., T − 1}, we have

Clt(z) ≤ Cht(z), θlt(z) ≥ θht(z), plt(z) ≤ pht(z), ylt(z) ≥ yht(z), Rlt(z) ≥ Rht(z),

ml,t+1(z) ≤ mh,t+1(z), and mh,t+1(z)− mht(z) ≤ ml,t+1(z)− mlt(z) for all z ∈ [z, z], with

strict inequality whenever the high-cash agent does not fully deplete. Besides, low-cash agents

are always more likely to fully deplete than their high-cash counterparts. Finally:

1 + πt+1 = UGAP
t+1 , (18)

and
θit(z)
θi0(z)

=

(
UGAP

i,t+1(z)

UGAP
t+1

)ϵ−1

. (19)

Proposition 2 implies that the economy eventually reaches the new fundamental

stationary equilibrium, where the allocation is identical to the initial one, but prices

are different. To understand this, notice that (19) means that the “market share” of

a given entrepreneur, θit(z), will be higher (lower) whenever her ratio of marginal

utility of consumption to labor disutility in the next period will be higher (lower) than

the weighted mean, UGAP
t+1 . This means that artificially poorer agents — i.e., whose real

balances fall below their fundamental level — will tend to have a higher market share

than their fundamentals would suggest6.

The intuition is that lower future consumption raises the value of holding money,

leading poorer agents to set lower prices and work harder than their high-cash coun-

terparts. This increases the marginal disutility of labor, partially offsetting the effect.

Consequently, price and output differences emerge among agents with identical pro-

ductivity due to a wealth effect, which gradually reduces disparities in money hold-

ings along the transition path. This mechanism, akin to Friedman (1969), drives faster

monetary accumulation for low-cash agents, reducing inequality.

Finally, (18) suggests that inflation (or deflation) persists while the weighted mean

marginal utility deviates from its fundamental level. When distortions are large, infla-

tion is higher. If UGAP
t+1 > 1, the marginal future value of money is high on average.

Then, prices would tend to be lower than their final stationary equilibrium level since

6What is meant with the word “tend” here is that some artificially poorer agents can still have a

lower market share than in the stationary equilibrium if the rise in her future marginal utility is still

lower than the rise in the weighted mean, UGAP
t+1 , especially if marginal labor goes up enough. As will

be shown later, log-utility (and homothetic utility functions in general) rules that possibility out.
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many agents charge lower prices to replenish their real balances. As distortions shrink,

future prices approach their stationary equilibrium level, resulting in inflation.

For the sake of tractability7, I assume, henceforth, a logarithmic utility function, i.e.

u(·) = log(·). Before I characterize the fundamental stationary equilibrium under the

new specification, I define, respectively, the following aggregate and connectedness

status-specific measures of productivity:

Z :=

 ∑
i∈{c,u}

ηi

∫ z

z
z

ϵ−1
ϵ dFi(z)

 ϵ
ϵ−1

and Zi :=
(∫ z̄i

zi

z
ϵ−1

ϵ dFi(z)
) ϵ

ϵ−1

, (20)

where i ∈ {c, u}. The characterization of the log-specific fundamental stationary equi-

librium follows as a corollary to Proposition 1.

Corollary 1.2. For log-utility, for every t ∈ TS, aggregate output and final good prices are:

Yt = Z
(

ϵ − 1
ϵ

)
β

γ
Pt =

(
ϵ

ϵ − 1

)
γ

β

1
Z Mt (21)

and relative revenues, monetary holdings, consumption, and prices are given by:

θit(z) =
z

ϵ−1
ϵ

Z ϵ−1
ϵ

mit(z) =
z

ϵ−1
ϵ

Z ϵ−1
ϵ

Mt (22)

Cit(z) =
z

ϵ−1
ϵ

Z ϵ−1
ϵ

Yt pit(z) =
( z
Z

)− 1
ϵ Pt (23)

for an arbitrary z ∈ [z, z].

Corollary 1.2 shows that changes in the money supply are fully absorbed into

prices, making output constant across fundamental equilibria8. Additionally, pit(z)

and Pt are a function of the money supply at the stationary equilibrium. When con-

venient, I explicitly denote this dependence, by writing pi(z, Mt) and P(Mt). Further-

more, for an arbitrary z ∈ [z, z], θt(z), mit(z), Cit(z) and pit(z) are rescaled versions of

their average counterparts, where the rescaling factor depends only on z. Thus, these

stationary equilibria reflect fundamentals as more productive entrepreneurs have higher

revenues, monetary holdings and consumption, and lower prices than the average.

7The tractability arises mainly due to the elimination of difficulties related to potential non-

homothety. However, the property that income and substitution effects cancel out also helps in the

analytical proofs but does not seem essential for obtaining the results, as is shown in Subsection 4.2.
8This feature does not rely on any specific functional form of u(·).
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3.1.3 Immediate return to the stationary equilibrium

In this subsection, I study under what circumstances high-cash agents fully deplete

their money at t = 1. In this case, since sit(z) = 0 for all z ∈ [z, z̄] and i ∈ {c, u},

high-cash agents at t = 2 hold only the money earned from selling their products at

t = 1, like their low-cash counterparts. By (13), equally productive high- and low-cash

agents set the same price, earning R1(z) = (1 + τA)m0(z). Therefore, individual and

aggregate prices match those in the helicopter drops case, and output remains Yt = Y0.

Notice that, by the buyer’s first order condition, full depletion happens when:

1
β

(
1 + τA

)
m0(z) =

1
β

P2Ch2 ≥ P1Ch1 = mh1, (24)

which implies that high-cash agents fully deplete their money if:

|τ| = τ ≤ 1 − β

β − η Mc0
M0

if τ > 0 (25)

|τ| = −τ ≤ 1 − β

η Mc0
M0

if τ < 0 (26)

This means that the high-cash agents fully deplete their money holdings if, and only

if, the monetary shock is “low enough”. Notice that (25) is only defined for η < β M0
Mco

.

To understand why, notice that, if η ∈
[

β M0
Mc0

, 1
]
, then 1

β

(
1 + τA)m0(z) > (1 + τ)m0,

meaning that the full depletion condition is satisfied for any τ ̸= 0 and for all z ∈ [z, z̄].

Intuitively, when the connected agent fully depletes their cash holdings, the resulting

drop in monetary holdings from one period to the next is too small to incentivize

saving. Thus, henceforth, I assume the most interesting case: η ∈
(

0, β M0
Mco

)
.

When (24) is satisfied, the economy is at the new equilibrium from period t = 2

onwards. However, there are important distributional effects at the period t = 1.

High-cash and low-cash agents’ consumption is given, respectively, by:

Ci1(z) = C0(z)
(

mi1(z)
(1 + τA)m0(z)

)
f ori ∈ {c, u}.

with Ch1(z) > C0(z) > Cl1(z). Now, I examine the case in which (24) does not hold.

3.1.4 Gradual return to the stationary equilibrium

When the shock is large enough — that is, (24) is not satisfied, — high-cash agents

smooth their consumption. Then, prices and output do not go to their equilibrium

values immediately anymore. Notice that, for as long as high-cash agents do not fully

deplete their resources, we must have MC
t < (1 + τA)M0. Evidently, for any t ∈

{1, 2, ...}, MC
t > M0 for τ > 0 and MC

t < M0 for τ < 0. In the following proposition, I
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fully characterize the transition dynamics after the shock. Most of these findings will

be shown to generalize to a setup with CRRA utility function in Subsection 4.2.

Proposition 3. Let TMAX < ∞ be defined as:

TMAX := arg max
T∈N

[
βT−1 >

1 + τA

1 + 1τ>0τ

]
(27)

Under log-utility, the moment where prices achieve their new stationary equilibrium level sat-

isfies T ≤ TMAX. Moreover, if we define:

Xi1 := Xi1(Zi) for X ∈ {C, θ, m} and i ∈ {h, l} (28)

as the average level of consumption, relative revenues, and monetary holdings among either

high- or low-cash agents, we have:

Xi1(z) = Xi1
z

ϵ−1
ϵ

Z
ϵ−1

ϵ
i

for X ∈ {C, θ, m} and i ∈ {h, l} (29)

for all t = {0, 1, ....} due to the homothety of log-utility. Moreover, the following results hold

for t = {1, ..., T − 1} and for any arbitrary z ∈ [z, z]:

(a)
mht(z)

Pt
> Cht(z) > C0(z) > Clt(z) =

mlt(z)
Pt

(b) Ch,t+1(z) < Cht(z) and mh,t+1(z) < mht(z)

(c) Cl,t+1(z) > Clt(z) and ml,t+1(z) > mlt(z)

(d) pht(z) > pH(z, Mt) > plt(z) > pH(z, MC
t )

(e) Pt > PH(MC
t )

( f ) θ0(z) > θh,t+1(z) > θht(z)

(g) θ0(z) < θl,t+1(z) < θlt(z) and pl,t+1(z) > plt(z)

(h) hl,t+1(z) = hlt(z) = hlt(z′) = hl,t+1(z′) f oreveryz, z′ ∈ [z, z]

(i) Y0 ≥ Yt+1 > Yt with strict inequality for t = {1, ..., T − 1}.

Proposition 3 shows that the number of periods needed for reaching the new equi-

librium satisfies (27). To build intuition, notice that high-cash agents’ money holdings

fall between t = 1, when high-cash agents own mh1(z) = θ0(z)(1 + 1τ>0τ)M0, and

t = T + 1, when they own mh,T+1(z) = θ0(z)(1 + τA)M0. For a fixed individual shock

τ, the size of this fall depends on how big the aggregate shock, τA, is, as it affects the

demand agents will face. If the aggregate shock is small, high-cash agents’ revenues

are lower, encouraging them to keep savings for longer to smooth consumption.
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Unlike the case of an immediate return to the stationary equilibrium, now, money

is not neutral in the aggregate. The proposition above shows that GDP falls under log-

utility after the shock — for contractionary or expansionist shocks alike — as the price

level remains above the helicopter drops level compatible with the amount of money

in circulation throughout the transition period, i.e., Pt > PH(MC
t ) for t < T. This

means that the aggregate price is higher than the one that ensures money neutrality.

For an expansionist shock, i.e., τ > 0, unconnected agents gradually increase their

prices along the transition path. This is because the future value of holding money for

them, given by β/ml,t+1(z), is inversely proportional to their future monetary hold-

ings. As they get richer, the value of money decreases, allowing their prices to ap-

proach their final, higher level. Since their “market share” falls over time, their rising

monetary wealth stems from a higher amount of money in circulation, MC
t . Finally,

note that even unconnected agents set prices above pH(z, MC
t ), meaning that their

prices remain too high to sustain output at Y0.

On the other hand, for a contractionary shock (i.e., τ < 0), the price of the goods

chosen by connected agents undershoots, since connected agents are made poorer, and

they need to decrease their price on impact more than the unconnected to remain com-

petitive. They gradually increase their prices as their monetary holdings grow. They

also work more than the unconnected for t ∈ {1, ..., T − 1}. To study the quantitative

implications of the model, I now conduct a simulation.

3.1.5 Simulation

For the simulation, I assume a uniform productivity distribution for simplicity. I also

do away with the common support assumption to facilitate calibration9. I fix the lower

bound for the productivity of both types of agent at zc = zc = 0.2 and calibrate the

upper bounds as will be described in more detail below. I normalize the initial mon-

etary base and aggregate prices to M0 = 1 and P0 = 1, and aggregator output is also

normalized to Y0 = 1 as a consequence. Table 1 summarizes the calibration.

As usual, I set the elasticity of substitution to ϵ = 11 to get a 10% markup. More-

over, each period is assumed to be a quarter, and, thus, I set the rate of time discount

to β = 0.99 to get a 1% quarterly real interest rate in equilibrium. I also set the shock

size to τ = 0.2, which amounts to connected agents becoming 20% richer than the un-

connected with the same productivity. In our calibration, this leads to, roughly, a 11%

9This assumption is useful — though not essential — for the proofs. However, due to the homoth-

eticity of the utility function, the relaxation of this assumption is inconsequential. Alternatively, we can

assume that Fu(z) = 1 for z ∈ [zu, zc] without having to relax it.
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Parameter Definition Value

ϵ Elasticity of substitution 11

β Rate of time discount 0.99

γ Labor disutility 8.1

η Fraction of connected agents 0.27

M0 Initial money supply 1

τ Individual monetary shock 0.2

zc Minimum productivity among connected 0.2

zu Minimum productivity among unconnected 0.2

zc Maximum productivity among connected 13.311

zu Maximum productivity among unconnected 3.3176

Table 1: Parameter values for the simulation

aggregate shock. Although this is fairly large, 1) the shock is not persistent, and 2) as

can be seen in Table 3 (see C), since 1999, shocks to the monetary base of at least 10%

occurred in a total of nine quarters, eight of which were positive shocks.

I use data from the Survey of Consumer Finances (SCF) to retrieve the fraction

of connected agents in the U.S. economy. The SCF contains information U.S. house-

holds’ financial asset ownership. Following the limited participation literature10, I

classify households as connected if they own stocks or bonds, directly or through mu-

tual funds. I disregard, whenever possible, foreign bonds, since, by our definition,

connected agents should get richer with interest rate cuts by the Fed. I also disregard

retirement funds and US savings bonds, due to illiquidity and low relevance.

In 2022, 27% of U.S. households met this definition, with an average income 2.06

times the national average11. I therefore, set η = 0.27 and calibrate zc, zu and γ to

match: 1) the normalizations described above, 2) a stationary equilibrium labor supply

of 1/312, corresponding to an 8-hour workday, and 3) a ratio of the monetary wealth

of connected agents and the whole population of Mc0/M0 = 2.06. These targets are

achieved exactly by construction. By setting zc = zu = 0.2, we also obtain a ratio of

the income of the 90th to the 10th percentiles of approximately 11.2149, which is close

to the actual ratio, according to the SCF, of 10, 4762.

10Mankiw and Zeldes (1991) and Vissing-Jørgensen (2002) show that stock owners’ consumption is

more sensitive to stock market excess returns, aligning with our definition of the connected agents.
11I consider households’ reported revenues in a normal year.
12In the model, for simplicity, I do not assume any upper bound to the labor of the entrepreneur.

Nevertheless, for the simulation, I set the labor endowment to 1. This does not affect the solutions for

as long as the labor constraint does not bind.
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I compute Gini indexes for consumption, revenues, and monetary holdings. The

stationary equilibrium income Gini obtained is Gini0 ≈ 0.4363. This is quite close

to the actual one, which has fluctuated around 0.4 since the 1990s. I also compute

the total factor productivity (TFP) in the simulations. The idea behind the TFP mea-

sure is to see how productive a representative household would need to be to pro-

duce the aggregate output given the average amount of labor in the economy ht =

∑i∈{c,u} ηi
∫ z

z lit(z)dFi(z). Since the technology is linear, this means that TFPt := Yt/ht.

Figure 1 and Figure 2 show, respectively, the paths for aggregate and individual

level variables under the baseline economy, the economy with full enforcement of

bond contracts — discussed in Subsection 3.2, — and the zero interest rate economy

— discussed in Subsection 3.3. Figure 2 considers connected and unconnected agents

with productivity zc = zu = Z . Since the logarithmic utility is homothetic, these

graphs are identical for other productivity levels up to a re-scaling.

(a) Path of output, Yt (b) Aggregate price, Pt

(c) Money in circulation, MC
t (d) Total Factor Productivity

Figure 1: Paths for aggregate variables in the three economies
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In our calibration, the transition path lasts three quarters. Figure 1a indicates that

output falls roughly 1.5% on impact, and nearly recovers at t = 2. This fall is con-

centrated on the production of connected agents, as can be seen in Figure 2a. This is

because, as shown in Proposition 3, labor and output of unconnected agents are con-

stant because they set the price to keep the demand they face unchanged. Besides,

since connected agents are more efficient on average, allocative efficiency goes down

with the shock — as can be seen in Figure 1d. This means that monetary shocks can

generate fluctuations in TFP if they favor more/less productive agents.

(a) Individual consumption, Cit(Z) (b) Individual output, yit(Z)

(c) Individual prices, pit(Z) (d) Individual revenues, Rit(Z)

Figure 2: Paths for individual variables in the three economies

Notes: Connected (C) and unconnected (U) cases. Subscripts denote: baseline (B), full enforcement (F), and zero interest rate (Z).

Figure 2a shows that connected agents’ consumption rises by roughly 3.96% on

impact, while unconnected agents’ consumption drops by about 8.39% due to rising

prices. Moreover, Figure 1c shows that 67.46% of the injected money is put in circula-

tion at t = 1. According to Figure 2d, connected agents’ revenues grow less than that

21



of the unconnected due to the reduction in their output. So, the fact that their income

falls at t = 1 makes them save around 0.3254τm0(Z) to afford P2Cc2(Z) = βP1Cc1(Z).

All these patterns are reflected in the Gini indexes, as can be seen in Figure 3, where

I use the following notation: I denote each Gini index as Gk, with G ∈ {C, R, M} cor-

responding, respectively, to the consumption, revenue, and monetary holdings Gini;

and k ∈ {B, F, Z} corresponding, respectively, to the baseline, full enforcement and

zero interest rate economies. Notice that the Gini for monetary wealth is the one that

goes up the most, indicating a big increment in wealth inequality, as the already rela-

tively rich connected agents become richer with the shock.

Figure 3: Gini indexes in the three economies

Notes: G ∈ {C, R, M} stand for consumption, revenue, and money holdings; k ∈ {B, F, Z}, for baseline, full enforcement, and

zero interest rate.

The Gini for income falls, reflecting the mechanism that re-establishes the equi-

librium since the unconnected agents choose low prices to recover their real money

balances. Thus, consumption inequality grows, but less than wealth inequality. Con-

cerning the aggregate price, Figure 1b indicates that roughly 82.4% of the increment in

the aggregate prices happens already at the first period after the shock. This means the

model produces endogenous aggregate price stickiness since money is gradually put

into circulation due to the consumption-smoothing behavior of connected agents13.

As for individual prices, Figure 2c shows that the differences between connected

and unconnected agents are small. Hence, the bulk of the disparities in revenue is

due to the adjustment on the labor margin. To better understand this, I use (13) and

13Elsewhere, it was shown that the aggregate price grows more than what should be the case, given

the amount of money put in circulation, that is, Pt > PH(MC
t ) for the periods t = 1, ..., T. Nevertheless,

the stickiness comes from the fact that Pt < PH((1 + τA)M0) for t = 1, ..., T, that is, the price is lower

than the final level it attains when the whole money supply is in circulation.
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(a) Connected agents’ prices, log(pct(Z)) (b) Unconnected agents’ prices, log(put(Z))

Figure 4: Decomposition of individual prices in the baseline economy

decompose the price series into three components: labor, future consumption, and

future aggregate price. I take the logarithm of connected and unconnected agents’

prices and their components, then normalize all series by subtracting the logarithm

of their initial stationary equilibrium values. This ensures that the logarithm of the

components sums to the logarithm of prices. I plot the results on Figure 4.

The graphs show that, for connected agents, the primary driver of price sluggish-

ness is the decline in labor, which reduces its marginal disutility and, consequently,

marginal costs. However, their higher consumption partially offsets this effect. For

unconnected agents, the fall in consumption is the main factor pushing prices down,

which is necessary to stay competitive and replenish purchasing power. The expec-

tation of high future prices is the main reason for the relatively strong initial price

response. Since part of the dynamics described in this section stems from idle money

balances, the next section introduces borrowing by reinstating the bonds market.

3.2 Full Enforcement

Now, I consider the case of full enforcement of debt contracts, where bond sales are

subject to a borrowing limit, namely, lt(z, mit(z)) = m−
i,t+1(z) = Rit(z). Intuitively,

since the repayment of one’s debt is always enforced, the entrepreneur must only have

enough cash at the beginning of t+ 1 to repay their debt. This means that for i ∈ {h, l}:

qt = β
PtCit(z)

Pt+1Ci,t+1(z)

In the fundamental stationary equilibrium, we must have q0 = β, since PtCit(z) =

Pt+1Ci,t+1(z), and b0(z) = 0 for all individuals with z ∈ [z, z] and i ∈ {c, u}.
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3.2.1 Helicopter drops of money

Given that the helicopter drops case does not distort relative money balances, the dy-

namics is identical to the case where bonds are absent. Since equally productive agents

have identical money holdings after the shock, there is no role for borrowing. Next, I

analyze the situation where there is an uneven monetary injection.

3.2.2 Uneven access to the new money and full enforcement of bond contracts

As before, I assume that connected agents are the first to see their monetary holdings

change. Then, the following corollary to Proposition 1 holds.

Corollary 1.3. For any τ ̸= 0, if there is full enforcement of bond contracts, the economy goes

immediately to the new stationary equilibrium at t = 1. The equilibrium bond price is qt = β

for t = 1, 2, .... Moreover, we have:

• Cit(z) = Ci,t+1(z), mit(z) = mi,t+1(z) and bit(z) = bi,t+1(z) for i ∈ {c, u} and

z ∈ [z, z];

• Cht(z) > Clt(z), pht(z) > pH(z, (1 + τA)M0) > plt(z) and Rlt(z) > θ0(z)Mt >

Rht(z);

Expenditures with consumption is given by:

PtCct(z) = (1 − β)(1 + τ)m0(z) + βRct(z) (30)

PtCut(z) = (1 − β)m0(z) + βRut(z) (31)

Let R(z) := (1 − β)τm0(z)/β. Then, there is an upper and a lower bound to the difference

in revenues between connected and unconnected agents:

R(z) > Rut(z)− Rct(z) > 0 if τ > 0 (32)

R(z) < Rut(z)− Rct(z) < 0 if τ < 0 (33)

and for the difference in consumption expenditures between them:

βR(z) > PtCct(z)− PtCut(z) = β
[
R(z)− β(Rut(z) − Rct(z))

]
> 0 if τ > 0, (34)

βR(z) < PtCct(z)− PtCut(z) = β
[
R(z)− β(Rut(z) − Rct(z))

]
< 0 if τ < 0. (35)

According to the corollary above, the economy immediately reaches the new sta-

tionary equilibrium, with persistent consumption differences between connected and

unconnected agents. Money holdings remain permanently fixed at their post-shock
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levels, indicating hysteresis. The prospect of future interest payments allows high-

cash agents to set higher prices, work less, and accept lower current revenue while

maintaining a higher consumption standard indefinitely. Corollary 1.2 also implies

that |Rut(Z)− Rct(Z)| < 0.002 and |PtCct(Z)− PtCut(Z)| < 0.002. For comparison,

in the bondless economy, at t = 1, these gaps were |Ru1(Z)− Rc1(Z)| = 0.0271 and

|P1Cc1(Z)− P1Cu1(Z)| = 0.1349. As expected, the introduction of bonds significantly

reduces heterogeneity between agents but makes these smaller differences permanent.

Figure 1a shows that aggregate output is unaffected by the shock, suggesting that,

with perfect enforcement of bond contracts, monetary policy is neutral at the aggregate

level. Similarly, Figure 1b shows that the aggregate price behaves as in the helicopter

drops economy. Therefore, in this setup, a representative agent model would provide

a reasonable approximation of the economy’s aggregate behavior. As shown in Fig-

ure 2a and Figure 2c, the gaps in consumption and prices are almost unnoticeable.

However, differences in revenues and output are more perceptible. Unlike before, un-

connected agents now produce slightly more than in the initial stationary equilibrium,

though this increment is quantitatively negligible.

It is easy to show that the output produced by the unconnected agents is:

yut(z) = z
(

ϵ − 1
ϵ

)
β

γ︸ ︷︷ ︸
y0(z)

−(1 − β)
but(z)
put(z)︸ ︷︷ ︸

>0

,

where the first term is the output needed to balance the trade-off between current labor

and future consumption without interest payments. The increment corresponds to the

additional output that must be produced to cover interest payments on bonds. In fact,

Corollary 1.2 implies that PtCut(z) < Rut(z), with the difference precisely account-

ing for coupon payments. Hence, monetary policy remains neutral in the aggregate

in the presence of a bonds market due to 1) a smaller increment in connected agents’

consumption off-setting part of the fall in output by increasing the value of future con-

sumption, and 2) the increment in production by unconnected agents to pay interests.

3.3 Exogenously Set Interest Rate

Now, I exogenously set the interest rate at either β < qt ≤ 1 or qt < β. This is relevant

because the central bank directly determines it. For qt > β (qt < β), an excess supply

(demand) of bonds arises, restricting bond sales to the available demand (supply). In

the case of β < qt ≤ 1, I assume:

lt(z, mlt(z)) =
θlt(z)

θlt(Zl)

(
ηh

1 − ηh

∫ z̄

z
bh,t+1(z)dFh(z)

)
. (36)
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This means that each low-cash agent can obtain a fraction of total bonds proportional

to their “market share” relative to the average low-cash agent. When qt < β, there is

excess demand for bonds. Thus, I add a rationing constraint, bh,t+1(z) ≤ rt(z, mht(z)),

with rt(z, mht(z)) defined similarly to (36). Since equilibrium in the bonds market

requires qt = β, I will assume that qt remains fixed at the exogenously set level during

the transition to ensure the exercise is meaningful. Proposition 4 guarantees that the

economy should eventually return to the fundamental stationary equilibrium.

Proposition 4. If there is a constant β < qt ≤ 1 or qt < β, then there must be a period

T < ∞ at which the economy returns to the fundamental stationary equilibrium.

The intuition is as follows: if the interest rate is below its equilibrium value, con-

nected agents are not compensated enough for deferring consumption. As a result,

their optimal consumption path features declining consumption during the transition,

leading to decreasing monetary holdings. Eventually, these holdings will be so close

to their stationary equilibrium level that these agents are better off spending it all at

once, as in the bondless economy. If the interest rate exceeds its equilibrium level,

unconnected agents avoid borrowing indefinitely, as it is very costly to do so.

To explore a middle ground between the two previous cases, I focus on the sce-

nario where qt = 1. In this case, there are no interest payments to connected agents,

but their idle cash balances are still channeled to the unconnected. Then, Figure 1b

shows that the aggregate price exhibits nearly zero stickiness. As shown in Figure 6 in

B, the labor and consumption components of prices cancel out for both connected and

unconnected agents. This occurs because unconnected agents face higher labor disu-

tility, raising their marginal cost as they must work harder to amortize their debt. This

offsets their incentives to set lower prices due to lower consumption. Consequently,

Yt = MC
t /Pt is also nearly unaffected, increasing negligibly.

Figure 2a indicates that the connected agents’ consumption grows less than in the

baseline economy due to higher prices. The consumption gap relative to unconnected

agents is smaller than in the baseline economy but remains larger than in the full en-

forcement case. Figure 2b shows that the output and revenues for all agents exceed

baseline levels, with unconnected agents’ revenue overshooting. However, in B, Fig-

ure 7 suggests that this overshooting is insufficient to make the monetary holdings of

connected and unconnected agents converge as fast as in the baseline economy, due to

debt amortization.

Overall, the aggregate variables, except for TFP, are compatible with a represen-

tative agent model, but the differences between connected and unconnected agents

remain significant, which is reflected in the Gini indexes. Still, Figure 3 shows that, al-

though the Gini for monetary wealth and income do not change by very much relative
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to the baseline, the consumption Gini increases by much less now, which illustrates

the role played by bonds in allowing for risk sharing.

3.4 Welfare

I now analyze the welfare implications of the models discussed so far. I adopt a utili-

tarian specification of the welfare function and give all individuals equal weight. The

function is, then, given by:

Wt =
∞

∑
s=t

βs−1 ∑
i∈{c,u}

ηi

∫ z

z

(
log(Cis(z))− γ

his(z)1+ζ

1 + ζ

)
dFi(z)

Now I define the short-run consumption equivalent as follows:

Wt = log(ΦC0(z))− γ
h0(z)1+ζ

1 + ζ
+

β

1 − β
W0,

where Φ − 1 is the uniform increment/decrement to the fundamental stationary equi-

librium consumption of all agents in the first period that would yield the same welfare

level as the actual allocation. This measure is used for the sake of readability, since,

due to the transitory nature of the shock, it does not matter in the long run. As a re-

sult, the usual consumption equivalent measure in terms of lifetime consumption is

two orders of magnitude smaller.

Table 2 shows the results. C contains tables for some counterfactual exercises aimed

at better understanding what drives the welfare differences. I have included the cases

for Mc0/M0 ∈ {2.06, 1, 0.6} for ease of comparison. The individual level shocks are

kept at τ = 0.2 throughout, and the aggregate shock is τA = 0.1112. Hence, I let the

value of the fraction of connected agents be, respectively, η ∈ {0.27, 0.5562, 0.927} to

ensure that the aggregate shock is constant14.

Model Mc0/M0 = 2.06 Mc0/M0 = 1 Mc0/M0 = 0.6

Baseline -5.5304% -0.4016% 6.6595%

Full enforcement -5.0228% -0.0021% 6.8995%

Zero interest rate -5.0894% -0.1006% 6.755%

Table 2: Welfare analysis

The table shows that, under the calibration adopted above, the average entrepreneur

would be just as well off accepting a one-period fall of 5.53% in their consumption

14Subsection 4.7 will show that changing η and Mc0/M0 produces the same aggregate and individual

level paths if both aggregate and idiosyncratic shocks are maintained.
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as in the baseline economy. Notably, welfare falls with the monetary shock when

Mc0/M0 = 2.06 and Mc0/M0 = 1, but increases when Mc0/M0 = 0.6. This occurs be-

cause, in the latter scenario, connected agents are, on average, poorer. Consequently, a

positive monetary shock reduces inequality and boosts consumption for agents who,

on average, derive a higher marginal utility from consumption. Among the shocked

economies, the baseline one exhibits the lowest welfare.

The full enforcement scenario yields the highest welfare post-shock. Although the

improvement is modest — approximately 0.5% under our calibration, — it nearly un-

does the decline caused by the shock when Mc0/M0 = 1. The zero interest rate model

represents a middle ground between the two limiting cases but it is closer to the full

enforcement scenario. This indicates that: 1) financial frictions reduce welfare after a

monetary shock, and 2) an exogenously low interest rate reduces welfare relative to

the equilibrium — natural — rate.

Moreover, the table also shows that monetary policy has two types of distributional

effects. On the one hand, it unequivocally decreases welfare by increasing inequality

between connected and unconnected agents with the same productivity. On the other

hand, it may primarily benefit agents with either higher or lower average productivity,

leading to an ambiguous overall effect on inequality — depending on how well-off

connected agents are relative to the unconnected.

Table 4, in C, shows that the main factor lowering welfare in the baseline economy

is the increment in inequality for Mc0/M0 ∈ {2.06, 1}, though the fall in output also

plays a minor role. Table 5 presents counterfactuals for the full enforcement economy.

Enforcing the attainment of the same equilibrium as the other economies after T pe-

riods results in minimal welfare loss. This suggests that permanent non-fundamental

inequality is the main driver of the welfare decline under full enforcement.

Finally, three exercises regarding the zero interest rate situation are shown in Ta-

ble 6, in C: (1) I impose the same output decline as in the baseline economy while

maintaining the inequality level generated by the zero-interest-rate model; (2) I im-

pose the inequality level in the baseline model but retain the rise in output under

the zero interest rate regime; (3) I eliminate non-fundamental inequality. Compared

to the baseline, the increase in welfare under the zero interest rate model is primar-

ily driven by the reduction in the disequalizing effects of the monetary shock when

Mc0/M0 = 2.06, where it benefits relatively richer agents. For Mc0/M0 = 0.6, welfare

improves despite the reduced redistribution induced by the shock — which benefits

poorer agents — because it reduces non-fundamental inequality.
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4 Sensitivity Analysis

In this section, I assess how my findings respond to changes in assumptions and pa-

rameters. I begin by analyzing a negative monetary shock. Secondly, I adopt a CRRA

utility specification. Third, I allow the Frisch elasticity of labor supply to vary. I then

modify the size of the individual shocks, while keeping the aggregate shock constant,

and interpret the findings in the context of futures markets. Additionally, I fix indi-

vidual and aggregate shock sizes but vary the amount of connected agents and their

relative wealth. Next, I examine how the length of the transition path varies with the

fraction of connected agents. Lastly, I study collateral constraints. I concentrate on

the baseline economy, as it provides a clear picture of how the patterns evolve. Most

graphs can be found in Appendix B, and Table 9 summarizes the results.

4.1 A Negative Shock

I impose an equivalent negative shock of τ = −0.1667, which also makes the high-cash

agents 20% richer than their low-cash counterparts while keeping all other parameters

unchanged. Figure 8 in Appendix B plots the graphs for the aggregate and individ-

ual variables. The patterns resemble those observed in the previous model, but now

the roles of connected and unconnected agents are reversed. As a result, the Gini

coefficients and TFP go in the opposite direction. Interestingly, the aggregate price

undershoots, as shown in Figure 8b, due to idle money balances.

4.2 CRRA Utility Specification

I now assume that the utility function is given by:

u(c) =
C1−α

1 − α
,

and consider α ∈ {0.5, 2}, corresponding to an intertemporal elasticity of substitu-

tion (IES) of IESα=0.5 = 2 and IESα=2 = 0.5. I recalibrate the model and assume, for

simplicity, that connected and unconnected agents’ average productivity is the same.

The model’s fundamental patterns remain unchanged. Figure 9a shows that, under

a lower IES, output declines more due to stronger consumption smoothing. Figure 9

indicates that prices and revenues respond more sharply, as prices become more sen-

sitive to changes in consumption for IESα=2 = 0.5. Thus, despite connected agents’

preference for extended consumption smoothing, higher prices shorten the transition.
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4.3 Varying Frisch Elasticity Of Labor Supply

I now let the inverse Frisch elasticity of labor supply vary. I consider four cases:

ζ ∈ {0, 0.5, 1, 2}, which correspond, respectively, to 1) an infinite Frisch elasticity, 2)

a “macro” elasticity of 2, 3) the baseline value, and 4) a “micro” elasticity of 0.5. Fig-

ure 10 shows that there is close to no difference across cases in the length of the tran-

sition path. However, for large Frisch elasticities, there is a bigger initial response in

prices, a larger fall in output, and more distortions in allocative efficiency. This is due

to a higher responsiveness in connected agents’ output and, thus, revenues.15

4.4 Varying Access To Financial Markets

I vary the fraction of connected households, η, while fixing the aggregate shock, τA.

This can be seen as changing access to financial markets. To better control parameter

variations, I assume no differences in average productivity between connected and

unconnected, i.e., Mc0/M0 = 1. I consider η ∈ {0.1, 0.27, 0.5, 0.75}, which corresponds

to the individual level shocks τ ∈ {1.1124, 0.412, 0.2225, 0.1483}16. Figure 11 shows

faster transition and price adjustment for higher η. Output declines the least when

η is the highest and the lowest. For η = 0.1, the combination of slow transition and

sluggish prices produces a lower fall in output relative to the other cases.

The heterogeneity in outcomes is highest when η is low, due to a higher individual

monetary shock. This is reflected in the Gini indexes. Besides, a slight fall in TFP, due

to the diminishing returns introduced by the CES aggregator, is visible in Figure 11d.

Finally, Table 7 shows that welfare falls the least in the economies with higher η across

all model specifications. Overall, the monetary shock is less distortionary when access

to financial markets is more widespread, despite exposing more agents to monetary

policy risk, as it makes the shocks work more like helicopter drops.

15Interestingly, Figure 10h shows that, under ζ = 0, we observe the same pattern as in Williamson

(2008): the price chosen by connected agents overshoots, while the price of unconnected agents’ prod-

ucts grows slowly. In his model, demand in the goods market of connected agents jumps on impact in

nominal terms, and the new money gradually flows into the unconnected goods market due to imper-

fect market segmentation. In my framework, under a perfectly elastic labor supply, marginal costs are

fixed, meaning that individual prices become proportional to future consumption expenditure.
16This negative relationship between market thickness and the impact of individual shocks is well-

documented in the literature. Higher market participation reduces price volatility by increasing market

liquidity, which allows trades to be absorbed with less price impact (Pagano, 1989; Allen and Gale,

1994). See Knaut and Paschmann (2019) for empirical evidence from energy spot markets.
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4.5 Futures

Assume that a fraction θH of connected agents are hedgers, while 1 − θH are specula-

tors. Additionally, suppose a market-making company facilitates futures trading. At

the end of each period, hedgers with productivity z contract to sell all their assets at

the beginning of the next period to the market maker for a price of m0(z). Specula-

tors hold shares in the market maker proportional to their monetary holdings. As a

result, hedgers’ monetary holdings are unchanged after the shock, making them for-

mally identical to unconnected agents. Meanwhile, speculators receive a proportional

shock of τ̃ = (1 + MH
c0/MS

c0)τ > τ, where MH
c0 and MS

c0 denote the average monetary

holdings of hedgers and speculators, respectively.

Due to perfect foresight, speculators’ higher risk does not command a premium

in the stationary equilibrium. Thus, introducing a futures market is isomorphic to

lowering η, as only a fraction η̃c = η(1− θH) < η receives monetary transfers from the

government. This implies that futures trading concentrates monetary policy risk on

fewer agents, slowing the transition and making prices more sluggish. The impact on

output volatility follows an inverse U-shape: it may rise for high η̃c but can stabilize if

speculators are few. Welfare effects remain ambiguous, depending on the productivity

distribution between hedgers and speculators.

4.6 Varying Access To Financial Markets and the Aggregate Shock

The analysis above keeps the shock to the monetary base fixed while varying the frac-

tion of connected agents, η. However, one could argue that, for the same shock to

the policy rate, the idiosyncratic shock, τ, would remain fixed17 while the aggregate

shock would vary18. I will now analyze this case. For η ∈ {0.1, 0.27, 0.5, 0.75}, we

have τA ∈ {0.02, 0.054, 0.1, 0.15}. Figure 12d, in Appendix C, shows that a larger

shock leads to a higher price level. Output declines the least at very high and very low

η, but the transition is shorter as the economy moves closer to helicopter drops. Be-

sides, Table 8, in Appendix C, shows that welfare losses follow an inverse U-shape in

η. Hence, when access to financial markets is widespread, the same interest cut is more

effective in affecting inflation, and monetary policy lags would be smaller. However,

shocks can be highly distortionary for intermediate levels of financial market access.

17This is clearer in the context of a government bond market (not modeled here), where prices would

rise uniformly across scenarios for a given policy rate cut.
18If, as argued before, a larger shock is needed to move prices in a thick asset market, it follows that

the money supply shock should increase with η.
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4.7 Varying The Extensive And Intensive Margins Of Inequality

Now, I conduct a similar exercise by varying η and maintaining the aggregate shock,

τA = 0.135. This time, I set the individual shock at τ = 0.2 and vary the rela-

tive average productivity of connected and unconnected.19 I consider Mc0/M0 ∈
{7.56, 2.8, 1.512, 1.008} for, respectively, η ∈ {0.1, 0.27, 0.5, 0.75}. This exercise trades

off two dimensions of inequality: the extensive margin (the number of connected

agents) and the intensive margin (how much richer they are relative to the uncon-

nected). As can be seen in Figure 13, aggregate variables and individual choices re-

main unchanged across cases, except for the paths of TFP and Gini coefficients. Natu-

rally, for higher values of η, the productivity advantage of connected agents is lower

by construction, reducing fluctuations in allocative efficiency and inequality.

(a) Positive shock, τ = 0.2 (b) Negative shock, τ = −0.1667

Figure 5: Length of the transition path for different fractions of connected

4.8 Financial Access And The Length of the Transition Path

I now allow the fraction of connected to vary more freely over the interval η ∈ [0, 1].20

Individual shocks remain fixed — either positive or negative, τ ∈ {0.2,−0.1667} —

as do relative initial average monetary holdings.21 As a consequence, η governs the

size of the aggregate shock. Figure 5 plots both TMAX, computed as in (27), and the

19The aggregate shock is now higher than before because I assume Mc0/M0 = 2.8 in the economy

with η = 0.27 to ensure that connected agents are, on average, more productive than the unconnected

across all scenarios.
20When η = 0 (η = 1), I consider a discrete number of connected (unconnected) agents, with zero

mass, meaning no aggregate shock (nearly helicopter drops).
21I do not recalibrate the model, as the normalization of the initial aggregate price is irrelevant here.

For simplicity, I set Mc0/M0 = 1.
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length of the transition path for both shock signs. The graphs indicate that general

equilibrium effects explain most of the length of the transition path. Specifically, when

connected (unconnected) agents have zero mass, T = TMAX for a positive (negative)

monetary shock. Moreover, the gap between T and TMAX shrinks when high-cash

agents are more numerous. Intuitively, for a given individual shock, a bigger aggre-

gate shock raises the expected market revenues of high-cash agents, reducing their

incentives to smooth consumption over an extended period.

4.9 Collateral constraint

So far, I have examined the post-shock dynamics in scenarios in which borrowing is

either not possible, unconstrained, or subject to a rationing constraint due to a nomi-

nal interest rate peg. My focus has thus been on the extensive margin of credit market

access. I now soften the financial frictions by examining them along the intensive mar-

gin. This not only provides a middle ground between the bondless and full enforce-

ment economies but also aligns more closely with much of the literature on financial

frictions. I define a borrowing constraints as follows:

bi,t+1(z) ≥ −lt(z, mit(z)) = −κRit(z), (37)

with κ ∈ (0, 1). Naturally, if it does not bind for any agent, the economy behaves as

it would under full enforcement. The proposition below characterizes, for log utility,

the post-shock convergence properties of such an economy:

Proposition 5. For log utility, there is a T < ∞ at which the economy with a borrowing

constraint achieves a stationary equilibrium, which can be either:

• Non-fundamental if bl,T+1(z) = b∗l,T+1(z) ≥ −κR∗
lT(z) for z ∈ [z, z];

• Fundamental if bl,T+1(z) = 0 and b∗l,T+1(z) < −κR∗
lT(z) and β

qT
mhT(z) ≤ θ0(z)MT+1

for z ∈ [z, z],

where the ∗ superscript denotes the variable’s unconstrained level. Along the transition, 1 ≥
qt > β. If the economy exits the zero lower bound at t, it reaches the stationary equilibrium at

t + 1.

The proposition states that the economy attains a stationary equilibrium in finite

time. Whether this equilibrium is fundamental depends on conditions at the last pe-

riod of the transition, T. Intuitively, as low-cash agents replenish their money over

time and reduce their bond supply, the borrowing constraint may cease to bind. This

33



occurs if the optimal bond sales, |b∗l,T+1(z)|, fall below the borrowing limit. If, how-

ever, before low-cash agents reach that point, high-cash agents decide to fully deplete

their money, the economy goes to the fundamental stationary equilibrium.

The stationary equilibrium depends on the severity of financial frictions. In either

case, inequality in monetary holdings declines along the transition. The economy may

hit the zero lower bound if there is excess demand for bonds at any positive interest

rate. Although entrepreneurs still have a preference for bonds by assumption, they

are compelled to maintain positive cash savings, since bond sales fall short of their

demand. Still, for any κ > 0.0995, the collateral constraint never binds, implying that

distortions from collateral requirements are rare in the model. Thus, the intensive

margin of credit access likely has little impact in real economic settings.

5 Concluding remarks

This paper has shown that the distributional effects of monetary shocks can delay the

economy’s return to long-run equilibrium. When a well-functioning credit market is

absent, the transition features sluggish price adjustments and depressed output due to

idle cash balances. A well-functioning bond market mitigates consumption inequality

but introduces hysteresis in monetary holdings, preventing a full return to fundamen-

tal equilibrium unless collateral constraints bind or interest rates deviate from their

equilibrium level.

My contributions lie in three main areas. First, I provide a tractable general equilib-

rium model linking portfolio and general equilibrium channels, allowing for endoge-

nous restoration of original allocations and the study of convergence properties. Sec-

ond, I demonstrate that even limited credit access significantly alters monetary policy

transmission by enabling near-complete risk sharing. Third, I offer new insights into

price stickiness, which can be partially driven by (i) beneficiaries of monetary shocks

lowering marginal costs and (ii) others setting lower prices to restore wealth.

Four key policy implications emerge. To begin, reducing financial frictions that

hinder access to credit substantially enhances market completeness, while easing col-

lateral constraints is less effective. Besides, broader access to financial markets dilutes

post-shock distortions under money-supply targeting. However, under interest rate

targeting, larger liquidity shocks may be required when participation is high, lead-

ing to an inverse U-shaped effect on distortions. Furthermore, credit markets allevi-

ate short-term distortions but can create persistent non-fundamental wealth dispar-

ities, highlighting the need for complementary inequality-reducing policies. Lastly,

given that the welfare losses from distortions are small in the long run, distributional
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effects are largely irrelevant to monetary policy in developed economies with well-

functioning credit markets.

Several extensions merit further exploration. First, a more microfounded approach

to financial segmentation could refine the link between interest rate shocks, asset prices,

and credit market dynamics. Besides, persistent inflation influences the nominal inter-

est rate through the liquidity effect, impacting the persistence of idiosyncratic shocks

under full enforcement of bond contracts. Thus, exploring a non-zero money sup-

ply growth rate could provide further insights. Finally, introducing information and

pricing frictions could provide further insights into monetary transmission under in-

complete markets.
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Appendix

A Proofs of Propositions

A.1 Proposition 1

Existence and uniqueness of the fundamental stationary equilibrium:

Notice that, for any arbitrary z ∈ [z, z] and i ∈ {c, u}, by imposing the fundamental

stationary equilibrium conditions onto (3), we obtain:

PtCit(z) = mit(z) + (1 − qt)bi,t+1(z).

Imposing the cash-in-advance constraint, (2), gives:

mit(z)− qtbi,t+1(z) = mit(z) + (1 − qt)bi,t+1(z),

which can only be satisfied for bi,t+1(z) = 0. Now, by aggregating (13), and imposing

Pt = Pt+1 and Ci,t+1(z) = Cit(z) for every z ∈ [z, z] and i ∈ {c, u}, we find that: ∑
i∈{c,u}

ηi

∫ z

z
zϵ−1 u′ (Cit(z))

ϵ−1

hit(z)ζ(ϵ−1)
dFi(z)

 1
ϵ−1

=

(
ϵ

ϵ − 1

)
γ

β
(38)

By exploiting the continuity of the u′(·), I define z∗ as being the z ∈ [z, z] that satisfies:

(z∗)ϵ−1u′ (Cit(z∗))
ϵ−1

hit(z∗)ζ(ϵ−1)
= ∑

i∈{c,u}
ηi

∫ z

z
zϵ−1 u′ (Cit(z))

ϵ−1

hit(z)ζ(ϵ−1)
dFi(z) (39)

Now, notice that:

θit(z) =

[
zu′ (Ci,t+1(z)) /hit(z)ζ

z∗u′ (Ci,t+1(z∗)) /hit(z∗)ζ

]ϵ−1

,

which follows from (38) and (39). This means that θit(z∗) = 1. Since, in the funda-

mental stationary equilibrium, there is no borrowing and mit(z) = Rit(z) for every

z ∈ [z, z] and i ∈ {c, u}, we must have Ci,t+1(z∗) = Cit(z∗) = θit(z∗)Mt/Pt = Mt/Pt.

This means that: (
ϵ

ϵ − 1

)
γ

β
= z∗

u′ (Mt/Pt)

hit(z∗)ζ
(40)

Moreover, with a bit of algebra, we can show that:

hit(z) =
1
z

(
pit(z)

Pt

)−ϵ

Yt =

[(
ϵ − 1

ϵ

)
1
γ

β
Pt

Pt+1
u′(Ci,t+1(z))

] ϵ
1+ζϵ

z
ϵ−1

1+ζϵ Y
1

1+ζϵ

t , (41)
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By using (41) and the fact that, in the fundamental stationary equilibrium, Yt = Mt/Pt

and Pt+1 = Pt, one can show that:

u′
(

Mt

Pt

) [
Mt

Pt

]−ζ

=

(
ϵ

ϵ − 1

)
γ

β(z∗)1+ζ
, (42)

which means that Mt/Pt is defined uniquely, as the left-hand side is strictly decreasing

on it. Therefore, Pt is proportional to Mt, and aggregate output Yt = Mt/Pt is defined

by parameters and z∗ alone, being, therefore, independent of Pt and Mt. Finally, θit(z)

is also well and uniquely defined for every z ∈ [z, z] and is independent of connected-

ness status. This means that mit(z), Cit(z), pit(z), yit(z) and Rit(z) are also well- and

uniquely-defined. Now, I look into non-fundamental stationary equilibria.

Finding a stationary equilibrium with qt = β:

Let us define “high-cash” agents as being agents for whom bh,t+1(z) > 0 and “low-

cash” as having bl,t+1(z) ≤ 0. We can then build Fh(·) and Fl(·) to be the corresponding

cumulative distribution functions. Finally, let ηh and ηl = 1 − ηh be the corresponding

fractions of the population that falls into either category.

The structure of the proof is as follows: I will begin by assuming that lt(z, mlt(z)) =

∞. This allows some low-cash agents to end up with an outstanding debt after the

bonds market closes at the beginning of the period. Then, I will show that the equilib-

rium implemented by the unconstrained economy is feasible in the constrained econ-

omy. First, notice that the Euler equation in the unconstrained case is given by:

u′(Cit(z))
u′(Ci,t+1(z))

=
β

qt

Pt

Pt+1
(43)

Since the right-hand side is common to all agents, either Cit(z)/Ci,t+1(z) is decreasing,

constant, or increasing over time for everyone. If qt = 1, sit(z) = 0 for all agents

by assumption, and, if qt < 1, positive cash savings, sit(z) > 0, cannot be optimal,

meaning that high-cash agents’ savings is channeled to low-cash. Then, MC
t = Mt for

t ∈ {1, 2, ...}. Now, I will show that there is a stationary equilibrium with qt = β. To

begin, if we set qt = β, (43) implies that u′(Ci1(z))
u′(Ci2(z))

= P1
P2

. Moreover:

Pt ∑
i∈{h,l}

ηi

∫ z

z
Cit(z)dFi(z) = Mt = Pt+1 ∑

i∈{h,l}
ηi

∫ z

z
Ci,t+1(z)dFi(z), (44)

Naturally, if Cit(z) = Ci,t+1(z) for every z ∈ [z, z] and i ∈ {h, l}, the equation above

implies that Pt = Pt+1, meaning that the first-order condition (43) is satisfied for every

agent. Lastly, integrating (2) implies ∑i∈{h,l} ηi
∫ z

z bi,t+1(z)dFi(z) = 0, meaning that the

bonds market is equilibrium. I will prove below that this requires mit(z) = mi,t+1(z)

for all agents and for any arbitrary t = 1, 2, ..., but, for now, I will take this result as
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a given for simplicity. It must be the case that this equilibrium lasts forever, proving

the existence of this stationary equilibrium with borrowing. Let us denote the de-

mand/supply of bonds by each agent under this equilibrium with a star, that is, b∗it(z)

Proving that qt = β for every period t:

Now assume, by contradiction, that 1 ≥ qt > β. The argument above proves that an

equilibrium with qt = β always exists, which means that ∑i∈{h,l} ηi
∫ z

z b∗i,t+1(z)dFi(z) =

0. I now prove that there cannot be an equilibrium with qt ̸= β. There are three

cases. First, consider qt
Pt+1

Pt
> β, meaning that the real interest rate is below the one

in the stationary equilibrium described above. By (43), u′(Ci,t+1(z)) > u′(Cit(z)) for

all z ∈ [z, z] and i ∈ {h, l}. This implies that Pt+1 > Pt to ensure that the amount of

money in circulation equates to the whole monetary base, MC
t+1 = MC

t . Since there

is inflation and the real interest rate is lower than the one in the equilibrium above,

bond demand by the high-cash agents must be lower than in the equilibrium above,

i.e., bh,t+1(z) < b∗h,t+1(z), and low-cash agents’ supply of bonds must be higher, i.e.,

−bl,t+1(z) > −b∗l,t+1(z). This implies:

0 = ∑
i∈{h,l}

ηi

∫ z

z
bi,t+1(z)dFi(z) < ∑

i∈{h,l}
ηi

∫ z

z
b∗i,t+1(z)dFi(z) = 0, (45)

which means that the bonds market is not in equilibrium, a contradiction.

Second, the case of qt
Pt+1

Pt
< β is analogous, since it implies u′(Ci,t+1(z)) < u′(Cit(z))

for z ∈ [z, z] and i ∈ {h, l}, by (43), and Pt+1 < Pt, by MC
t+1 = MC

t . Hence, there is

deflation and a real interest rate above the one in the equilibrium described above.

As a result, bh,t+1(z) > b∗h,t+1(z) and −bl,t+1(z) < −b∗l,t+1(z). This, in turn, implies

that ∑i∈{h,l} ηi
∫ z

z bi,t+1(z)dFi(z) > 0, and, hence, the economy is not in equilibrium.

Third, we consider the case where qt
Pt+1

Pt
= β. This implies u′(Ci,t+1(z)) = u′(Cit(z))

for z ∈ [z, z] and i ∈ {h, l} and, hence, Pt+1 = Pt. However, since qt > β, qt
Pt+1

Pt
= β

implies Pt > Pt+1, a contradiction. This rules out the possibility of an equilibrium with

1 ≥ qt > β. A similar argument can be made to rule out equilibria with qt < β.

Equilibrium uniqueness:

Now, I will show that, under qt = β, there can be no equilibrium that is not stationary.

This will prove the uniqueness of the equilibrium described above under full enforce-

ment. By integrating the individual price choices, we obtain:

Pt = Pt+1

(
ϵ

ϵ − 1

)
γ

β

 ∑
i∈{h,l}

ηi

∫ z

z

zϵ−1u′(Ci,t+1(z))ϵ−1

hit(z)ζ(ϵ−1)
dFi(z)

 1
1−ϵ

(46)
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Plugging (41) into the equation above yields:

Pt = Pt+1

(
ϵ

ϵ − 1

)
γ

β
Yζ

t

 ∑
i∈{h,l}

ηi

∫ z

z
z
(ϵ−1)(1+ζ)

1+ζϵ u′(Ci,t+1(z))
ϵ−1

1+ζϵ dFi(z)


1+ζϵ
1−ϵ

(47)

Now, notice that, at any period, and since qt = β, (43) can be written with a weak

inequality, that is u′(Ci,t+1(z)) ≤ Pt+1
Pt

u′(Cit(z)), which should also be valid even if

the economy ends up in a fundamental stationary equilibrium in the next period. By

plugging this version of the first-order condition into the equation above, we obtain: ∑
i∈{h,l}

ηi

∫ z

z
z
(ϵ−1)(1+ζ)

1+ζϵ u′(Cit(z))
ϵ−1

1+ζϵ dFi(z)


1+ζϵ
ϵ−1

≥
(

ϵ

ϵ − 1

)
γ

qt
Yζ

t =

(
ϵ

ϵ − 1

)
γ

β
Yζ

t

which is valid for any t. This allows us to re-write (47) as:

Pt ≤ Pt+1

(
Yt

Yt+1

)ζ

, (48)

Since Pt = Mt/Yt and Mt+1 = Mt, this condition implies Yt ≥ Yt+1. Notice that

this immediately rules out the possibility of deflation. Thus, we must either have

inflation or constant prices. Assume, by contradiction, that Pt+1 > Pt for a given

period t ∈ {1, 2, ...}. Then, by using the definition (16) and (46), we can see that:

UGAP
t+1 =

Pt+1

Pt
> 1, (49)

I am going to show that this implies that Pt+2 > Pt+1. To see this, notice that, since

Pt+2 ≥ Pt+1 by the condition above, and given the first-order condition (43) and qt = β,

then Ci,t+2(z) ≤ Ci,t+1(z) for any z ∈ [z, z] and i ∈ {h, l}. Imposing (41) yields:

zϵ−1u′(Ci,t+2(z))ϵ−1

hi,t+1(z)ζ(ϵ−1)
>

[(
ϵ

ϵ − 1

)
γ

β

Pt+2

Pt+1

] ζϵ(ϵ−1)
1+ζϵ

Y
ζ(1−ϵ)
1+ζϵ

t z
(ϵ−1)(1+ζ)

1+ζϵ u′(Ci,t+1(z))
ϵ−1

1+ζϵ

=
zϵ−1u′(Ci,t+1(z))ϵ−1

hit(z)ζ(ϵ−1)

(
Pt+2

Pt+1

Pt

Pt+1

) ζϵ(ϵ−1)
1+ζϵ

since Yt+1 < Yt due to our contradiction assumption coupled with MC
t+1 = MC

t . By

(49), we obtain Pt+2
Pt+1

> Pt+1
Pt

, which shows that prices cannot be constant. By an in-

duction argument, we can see that the inflation rate is bounded below by a positive

constant, since 1 + πt+s = UGAP
t+s ≥ UGAP

t+1 > 1 for s ∈ {2, 3, ...}, meaning that the price

level diverges. This, implies, however, by equation (44), that:

lim
t→∞ ∑

i∈{h,l}
ηi

∫ z

z
Cit(z)dFi(z) = 0
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By the fact that there is borrowing in any equilibrium along this path, there is a non-

negligible mass of high-cash agents that are strictly richer than their low-cash coun-

terparts, that is, Cht(z) > Clt(z) ≥ 0, meaning that aggregate consumption must be

bounded away from zero. Thus, the only possible equilibrium is the one in which

Pt+1 = Pt and Ci,t+1(z) = Cit(z) for every z ∈ [z, z], i ∈ {h, l} and t ∈ TS. Evidently,

PtCht(z) > PtClt(z), pht(z) > plt(z) and, thus, Rlt(z) > Rht(z) for all t ∈ TS.

Constancy of borrowing/lending decisions:

By imposing (2) into the budget constraint, (3), we see that m−
i,t+1(z) = Rit(z). Now,

notice that, since u′(Ci,t+1)/Pt+1 = u′(Ci,t+2)/Pt+2 for z ∈ [z, z] and i ∈ {h, l}, by (13),

pit(z) = pi,t+1(z) and, thus, Rit(z) = Ri,t+1(z). This means that m−
it (z) = m−

i,t+1(z) for

t = 2, 3, .... Therefore, by the budget constraint, (3), we have:

PtCit(z) = Rit(z) + bit(z)− βbi,t+1(z) (50)

Together with (50) and the fact that PtCit(z) = Pt+1Ci,t+1(z), this implies that:

bit(z)− βbi,t+1(z) = bi,t+1(z)− βbi,t+2(z) (51)

for every t ∈ TS. Now, let us define αs such that bi,t+s(z) = αsbi,t+s−1(z), for s = 1, 2, ....

Thus, for an arbitrary r = 1, 2, ..., we can apply this definition iteratively to obtain:

bi,t+r(z) =

(
r

∏
s=1

αs

)
bit(z) (52)

I will now prove that αs = 1 for s = 1, 2, .... I will concentrate on α1 without any

loss of generality. Assume, by contradiction, that α1 < 1. Then, by (51), we have:

(1 − α1β) = (1 − α2β)α1 < (1 − α2β) ∴ α2 < α1

Obviously, the same reasoning applies to show that αs < α1. Therefore, αs < 1 for all

s ≥ 1. However, this means that limr→∞ bi,t+r(z) = 0 and, thus:

lim
r→∞

Pt+rCi,t+r(z) = lim
r→∞

Ri,t+r(z)

However, since Rl,t+r(z) > Rh,t+r(z), this means that Pt+rCl,t+r(z) > PtCh,t+r(z) at the

limit: a contradiction, since Pt+rCh,t+r(z) is constant for all r and larger than Pt+rCl,t+r(z).

Now, I proceed to the second case: assume, by contradiction, that α1 > 1. Similarly,

this implies that αs > α1 > 1 for any s > 1. Now, this means that:

lim
r→∞

bc,t+r = lim
r→∞

(
r

∏
s=1

αs

)
bct > lim

r→∞
αr

1bct = ∞

43



which is not possible, since Mt < ∞. Therefore, I conclude that αs = 1 for s = 1, 2, ...

and, thus, bit(z) = bi,t+1(z) for z ∈ [z, z], i ∈ {h, l} and t ∈ TS.

Proving that the unconstrained optimum is feasible:

Using agents’ cash-in-advance constraint, (2), at t, this result implies that:

bit(z) =
mit(z)− PtCit(z)

β

for z ∈ [z, z] and i ∈ {h, l}. One can easily see that mit(z) = mi,t+1(z) for t ∈ TS.

Since mi1(z) > 0 for every z ∈ [z, z] and i ∈ {h, l}, this implies that no agent enters the

bonds market with outstanding debt, meaning that bl,t+1(z) < m−
l,t+1(z) = Rlt(z) for

every z ∈ [z, z], proving that the borrowing constraint does not bind.

Fundamental Stationary Equilibrium Uniqueness:

Finally, I can prove that, if money is distributed such as in the fundamental stationary

equilibrium, it is the unique equilibrium in this economy. I denote the fundamental

stationary equilibrium with the subscript 0 and, moreover, drop the i, since choices do

not depend on the entrepreneur’s type. The only circumstance in which the economy

would not be in the fundamental stationary equilibrium is if PtCit(z) < m0(z) for a

non-negligible mass of agents. Assume this is the case by means of contradiction. This

signifies that bi,t+1(z) ̸= 0 for a positive mass of agents.

As proven above, under lt(z, mt(z)) = mt+1(z), qt = β, meaning that u′(Ci,t+1(z))
Pt+1

=
Cit(z)

Pt
for every i ∈ {h, l} and z ∈ [z, z] by (43). Consider the case of a (possibly coun-

terfactual) non-lender counterpart — that is, an agent who chooses Cit(z) = m0(z)
Pt

—

to the agents who buy bonds, with the same productivity. By plugging (41) into (13),

we obtain:

θnon−lender,t(z)
θlender,t(z)

=

[
u′ (Cnon−lender,t+1(z))

u′ (Clender,t+1(z))

] ϵ−1
1+ζϵ

=

[
u′ (Cnon−lender,t(z))

u′ (Clender,t(z))

] ϵ−1
1+ζϵ

< 1,

since PtClender,t(z) < m0(z) = PtCnon−lender,t(z). Given that MC
t = Mt, this means

that Rlender,t(z) > Rnon−lender(z). However, since blender,t+1(z) > 0 = bnon−lender,t+1(z),

plugging (2) into (3) yields:

mlender,t+1(z) = Rlender,t+1(z) + blender,t+1(z) > Rnon−lender,t+1(z) = mnon−lender,t+1(z),

which means that the lender should consume more than the non-lender, that is, they

should borrow money, a contradiction. I conclude that mt(z) = R0(z) implies that the

economy is in the fundamental stationary equilibrium.
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A.1.1 Corollary 1.1

By assumption, the economy starts off at the fundamental stationary equilibrium. The

monetary base grows, that is, M1 = (1 + τA)M0. If revenues are undistorted relative

to the fundamental equilibrium, m1(z) = (1 + τH)m0(z) = θ0(z)(1 + τA)M0 = R1(z),

since τH = τA. However, this implies that the new monetary holdings are compati-

ble with a new fundamental stationary equilibrium. Given Proposition 1, this is the

unique equilibrium that can arise in this economy. Now, notice that, even if borrowing

was possible, in the fundamental equilibrium, bt+1(z) = 0 for all z ∈ [z, z]. Since buy-

ing bonds dominates saving in idle cash for qt = β, this implies that st(z) = 0 for all

z ∈ [z, z] in the economy where lt(z, mt(z)) = 0. This proves that the economy must

be in the fundamental stationary equilibrium after the helicopter drops shock.

A.1.2 Corollary 1.2

Since Pt+1Ci,t+1(z) = Rit(z), by (13), with some algebra, we must have:

pit(z) =
(

ϵ

ϵ − 1

)
γ

β

[
D(pit(z), Pt, Yt)

z

]1+ζ

pit(z) =

[(
ϵ

ϵ − 1

)
γ

β

Y1+ζ
t

z1+ζ

] 1
ϵ(1+ζ)

Pt (53)

for t ∈ TS. Aggregating prices according to (12) and using Pt =
Mt
Yt

yields:

Yt =

[(
ϵ − 1

ϵ

)
β

γ

] 1
1+ζ

Z and Pt =

[(
ϵ

ϵ − 1

)
γ

β

] 1
1+ζ Mt

Z (54)

for t ∈ TS. Using (53), and plugging (54) into it gives:

θit(z) =
(

pit(z)
Pt

)1−ϵ

=
z

ϵ−1
ϵ

Z ϵ−1
ϵ

Plugging this into mit(z) = θt(z)Mt, Cit(z) =
mit(z)

Pt
and pit(z) = θit(z)

1
1−ϵ Pt yields the

remaining equations.

A.1.3 Corollary 1.3

At t = 1, the cash-in-advance and the budget constraints, (2) and (3), are:

P1Ci1(z) = mit(z)− βbi2(z)

P2Ci2(z) = Ri1(z) + (1 − β)bi2(z)
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Since PtCit(z) = PsCis(z) for i ∈ {h, l} and t, s = 1, 2, ..., re-arranging the terms yields:

PtCct(z) = (1 − β)(1 + τ)m0(z) + βRct(z)

PtCut(z) = (1 − β)m0(z) + βRut(z)

Subtracting the latter expression from the former yields:

PtCct(z)− PtCut(z) = (1 − β)τm0(z)− β(Rut(z)− Rct(z))

Since we know that Cct(z) > (<)Cut(z), then PtCct(z)− PtCut(z) > (<)0 for τ > (<)0.

As a result, we obtain:

|Rut(z)− Rct(z)| <
∣∣∣∣ (1 − β

β

)
τm0(z)

∣∣∣∣
Equations (34) and (35) follow immediately from the facts that Rut(z)− Rct(z) > (<)0

and Cct(z) > (<)Cut(z) for τ > (<)0.

A.2 Proposition 2

Assume that, if no high-cash agent chooses to partially deplete, then T = 1 and, hence,

the result follows trivially. I will, then, concentrate on the case where a positive mass

of high-cash agents partially depletes. The case where a zero mass of high-cash agents

partially depletes also follows as a combination of both cases.

Low-cash agents are more likely to fully deplete their cash at t = 1:

First, I need to prove that, for any z ∈ [z, z], the low-cash agent is more likely to fully

deplete at t = 1. Assume that the high-cash agent saves nothing at t = 1. Then

Ch1(z) =
mh1(z)

P1
> ml1(z)

P1
≥ Cl1(z). By the first order condition of the — fully-depleting

— high-cash agent:

u′(Cl1(z))
P1

>
u′(Ch1(z))

P1
≥ β

u′(Rh1(z)/P2)

P2
,

Since Rl1(z) = Rh1(z) in the case where both fully deplete at t = 1, the full depletion

condition is satisfied for the low-cash agent as well. So, the low-cash agent always

fully depletes when the high-cash one with the same productivity does, proving our

result. Thus, for any z ∈ [z, z], there are three possibilities: 1) both kinds of agent fully

deplete; 2) both partially deplete; or 3) only the high-cash type partially depletes.

Revenues are not lower for low-cash agents than for high-cash ones:

I will show that θl1(z) ≥ θh1(z). We analyze each of the cases in turn:
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1) Everyone fully depletes for z ∈ [z, z]: Naturally, θl1(z) = θh1(z).

2) Everyone partially depletes for z ∈ [z, z]: Now, we have, for i ∈ {h, l}:

θi1(z) =

[(
ϵ − 1

ϵ

)
z1+ζu′(Ci1(z))

γYζ
t

] ϵ−1
1+ζϵ

(55)

Since Ci1(z) strictly increases on mi1(z) given P1, then θl1(z) > θh1(z).

3) Only the high-cash agent partially depletes for z ∈ [z, z]: Notice that, in this case:

θi1(z) =

[(
ϵ − 1

ϵ

)
z
γ

β
P1

P2

u′(Ci2(z))

hζ
i1

)

]ϵ−1

, (56)

Assume by contradiction that θl1(z) ≤ θh1(z). This requires pl1(z) ≥ ph1(z) and, by

(13), u′(Ch2(z))
/

hζ
h1 ≥ u′(Cl2(z))

/
hζ

l1. As shown before, for i ∈ {h, l}:

u′(Ci2(z))
hi1(z)ζ

=

[(
ϵ

ϵ − 1

)
γ

β

P2

P1

] ζϵ
1+ζϵ

Y
−ζ

1+ζϵ

1 z
ζ(1−ϵ)
1+ζϵ u′(Ci2(z))

1
1+ζϵ , (57)

which, in turn, implies that Cl2(z) ≥ Ch2(z). Since the low-cash agent fully depletes,

Rl1(Z) ≥ P2Cl2(z). Moreover, θl1(z) ≤ θh1(z) implies that Rh1(z) ≥ Rl1(z). However,

since sh1(z) > 0 and sl1(z) = 0, Cl2(z) ≥ Ch2(z) cannot happen, since consumption at

t = 2 is strictly increasing on mi2(z), given the price P2. As a result, θl1(z) > θh1(z).

I have proved above that θl1(z) ≥ θh1(z). This implies that pl1(z) ≤ ph1(z), yl1(z) ≥
yh1(z) and Rl1(z) ≥ Rh1(z) for all z ∈ [z, z], where the inequalities hold strictly when-

ever the high-cash agent partially depletes. Now, I will prove, by an induction argu-

ment, that these results hold for any t = {1, 2, ...} in which the economy is not in a

stationary equilibrium. It suffices to show that, if the inequalities above hold for an

arbitrary t, then mh,t+1(z) ≥ ml,t+1(z), implying that θl,t+1(z) ≥ θh,t+1(z).

Again, I will show it by cases. First, the case where both high- and low-cash agents

fully deplete at t for some z ∈ [z, z] is trivial, as it implies that ml,t+1(z) = mh,t+1(z).

Now, consider the other two cases — that is, either both types partially deplete at t or

only the high-cash agent does. Assume, by contradiction, that mlt(z) < mht(z) and

ml,t+1(z) > mh,t+1(z). This means that θlt(z) > θht(z), and it requires Cl,t+1(z) <

Ch,t+1(z), which contradicts our assumption that ml,t+1(z) > mh,t+1(z). I, therefore,

conclude that θlt(z) ≥ θht(z), plt(z) ≤ pht(z), ylt(z) ≥ yht(z) and Rlt(z) ≥ Rht(z) for

all z ∈ [z, z] and for all t such that the economy is not in a stationary equilibrium.
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Characterization of inflation and relative revenues:

Integrating the individual price choices:

Pt = Pt+1

(
ϵ

ϵ − 1

)
γ

β

 ∑
i∈{h,l}

ηi

∫ z

z

zϵ−1u′(Ci,t+1(z))ϵ−1

hit(z)ζ(ϵ−1)
dFi(z)

 1
1−ϵ

(58)

Now, notice that we can re-write:

θit(z) =
[(

ϵ − 1
ϵ

)
β

γ

Pt

Pt+1

zu′(Ci,t+1(z))
hit(z)ζ

]ϵ−1

This implies that 1+πt+1 = UGAP
t+1 and θit(z)

θi0(z)
=
(

1
1+πt+1

)ϵ−1
UGAP

i,t+1(z)
ϵ−1 =

(
UGAP

i,t+1(z)

UGAP
t+1

)ϵ−1

.

Characterization of relative monetary holdings per income bracket:

Notice that, for any z ∈ [z, z], the result above implies that PtCht(z) > PtClt(z) and

Rht(z) < Rlt(z) if the high-cash agent does not fully deplete, which means, by (3),

that:

∆mh,t+1(z) = Rht(z)− PtCht(z) < Rlt(z)− PtClt(z) = ∆ml,t+1(z), (59)

where ∆mi,t+1(z) = mi,t+1(z)− mit(z) for i ∈ {h, l}..

The economy converges to the new stationary equilibrium in finite time:

Assume, by contradiction, that the mass of high-cash partially depleting agents re-

mains forever bounded away from 0. Then, for these agents:

lim
t→∞

u′(Cht(z))
Pt

= lim
t→∞

u′(Ch1(z))
βt−1P1

= ∞,

which implies that either Pt → 0 or Cht(z) → 0. However, for partially depleting high-

cash agents, pht(z) > plt(z) ≥ 0, which implies that Pt > 0 for every t = {1, 2, ...} by

our contradiction assumption. This implies that Cht → 0, which cannot be the case

either, since mht(z) > mlt(z) ≥ 0, which means that positive consumption is always

available for these high-cash agents.

This proves that the mass of partially depleting agents goes to 0 in finite time,

meaning that, at some time T < ∞, the economy reaches the new fundamental sta-

tionary equilibrium, in which the aggregate price is equal to PT = PH(MT) > 0. The

argument above ensures that no agent can partially deplete forever. Naturally, for any

high-cash agent that partially depletes until T − 1, it is the case that mhT(z) > mlT(z),

meaning that ChT(z) = mhT(z)/PH((1 + τA)M0) > C0(z). As a result, consump-

tion only returns to the stationary equilibrium level for all agents at T + 1. Finally,

YT = MT/PH(MT) = Y0.
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A.3 Proposition 3

There is a non-negligible mass of fully depleting agents:

Now, I go on to prove that there is a non-negligible mass of fully depleting agents.

Assume otherwise by means of contradiction. I begin by showing that, if there is no

positive mass of fully depleting agents at t, then this must also be the case for t + 1.

Again, by contradiction, assume that there is some low-cash agent that fully depletes

at t + 1. This suffices as we have already shown that low-cash agents are more likely

to fully deplete. As will be shown in more detail below, due to the homothety of

preferences, Rlt(z) = Rltz
ϵ−1

ϵ /Z
ϵ−1

ϵ
l and Clt(z) = Cltz

ϵ−1
ϵ /Z

ϵ−1
ϵ

l , where Rlt and Clt are

respectively the average revenue and consumption among low-cash agents22. Thus:

(Rlt − PtClt)
z

ϵ−1
ϵ

Z
ϵ−1

ϵ
l

= Rlt(z)− PtClt(z) = ∆ml,t+1(z)

Now, notice that, since ∆mi,t+1(z) must aggregate to 0 for i ∈ {h, l}, and ∆ml,t+1(z) >

∆mh,t+1(z) for every z ∈ [z, z] according to Proposition 2, then ∆ml,t+1(z) > 0 for all

z ∈ [z, z]. For the low-cash agent that partially depletes their money at t, but fully

depletes at t + 1, by the first-order condition, we have Pt+1Cl,t+1(z) = βPtClt(z) <

mlt(z) < ml,t+1(z), a contradiction. Therefore, if there is no positive mass of partially

depleting agents at t, then the same must hold for t + 1 as well. This means that the

economy will never converge to the fundamental stationary equilibrium, contradict-

ing Proposition 2. Thus, there is a positive mass of fully depleting agents at any t.

Relative revenues obtained by low- and high-cash agents:

Since some agents need to fully deplete in equilibrium, and low-cash agents are more

likely to do so, then some low-cash agents must choose full depletion. I will show

that all low-cash agents must choose to fully deplete whenever any of them find it

optimal. First, notice that, for any fully depleting low-cash agent, plt(z) must satisfy

(53). Therefore, for the low-cash agents:

θlt(z) =

[(
ϵ − 1

ϵ

)
β

γ

1

Y1+ζ
t

] ϵ−1
ϵ(1+ζ)

z
ϵ−1

ϵ , (60)

22I will show later in this proof that this occurs both for fully and partially depleting agents, and it

means that all agents of the same type, that is, either low- or high-cash, must make the same choice

between full and partial depletion.
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which is decreasing on aggregate output. Moreover, at t = 1, full depletion requires:

1
β

θl1(z)MC
1 =

1
β

Rl1(z) ≥ ml1(z) = (1 + 1τ<0τ)θl0(z)M0

1
β

Y
1−ϵ

ϵ
t MC

t ≥ (1 + 1τ<0τ)Y
1−ϵ

ϵ
0 M0

where 1τ<0 takes the value of 1 for contractionary shock, and 0 otherwise. Notice that

this condition does not depend on z, meaning that it holds for all low-cash agents. A

simple induction argument generalizes this result for an arbitrary t. Now, I consider

high-cash agents. The relative revenue for partially depleting agents is given by (55),

which decreases on their current consumption. As before, homothety implies that all

high-cash agents choose to save a positive amount whenever one of them does so.

A similar argument to the one made above suffices to prove it, as the condition for

partial depletion by high cash agents does not depend on z. I will now arrive at an

expression for the consumption, at t = 1, of any high-cash agent as a function of the

contemporaneous average high-cash consumption.

Average individual variables

Notice that the intertemporal budget constraint of any high-cash agent along the tran-

sition path can be written as:

P1Ch1(z)
T

∑
t=1

βt−1 = mh1(z) +
T−1

∑
t=1

θht(z)PtYt,

where I have imposed the first-order condition. Moreover, plugging (55) into it yields:

Ch1(z) =
(

1 − β

1 − βT

)
1
P1(1 + 1τ>0τ)m0(z) +

(
z1+ζ

Ch1(z)

) ϵ−1
1+ζϵ

[(
ϵ − 1

ϵ

)
1

γP1

] ϵ−1
1+ζϵ T−1

∑
t=1

β
(t−1)(1−ϵ)

1+ζϵ P
ϵ(1+ζ)
1+ζϵ

t Y
1+ζ
1+ζϵ

t

 ,

which, using (22), can be simplified to:

Ch1(z) = Az
ϵ−1

ϵ + Bz
(1+ζ)(ϵ−1)

1+ζϵ Ch1(z)
1−ϵ

1+ζϵ ,

where A and B are common across all high-cash agents. Now, one can guess that

Ch1(z) = Ch1zD
/
ZD

h , where Ch1 is the average consumption by high-cash agents,

and D is a constant. By plugging this in the equation above, we obtain D = ϵ−1
ϵ .

By the first-order condition of partially depleting agents, this means that the whole

consumption path is the same across high-cash agents as well as the moment where

they decide to fully deplete, T. Together with (60), this implies that Xi1(z) = Xi1
z

ϵ−1
ϵ

Z
ϵ−1

ϵ
i

and Xi1 = Xi1(Zi) for X ∈ {C, θ, m}, i ∈ {h, l} and z ∈ [z, z].
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Output and consumption paths:

The results above imply that θlt(z) > θ0(z) > θht(z) for every z ∈ [z, z] and t =

{1, ..., T − 1}. Equations (60) and (55) imply, respectively, that Yt < Y0 and Cht(z) >

C0(z) > Clt(z) for every z ∈ [z, z] and t along the transition, where the latter inequality

relies on the former. Moreover, notice that, by (13):

pit(z) =
[(

ϵ

ϵ − 1

)
γ

z1+ζ β
Pζϵ

t Yζ
t Pt+1Ci,t+1(z)

] 1
1+ζϵ

(61)

for z ∈ [z, z] and i ∈ {h, l}. Aggregating it, and computing the corresponding θit(z)

gives:

θit(z) =

(
z1+ζ

Pt+1Ci,t+1(z)

) ϵ−1
1+ζϵ

∑j∈{h,l} ηj
∫ z

z

(
ẑ1+ζ

Pt+1Cj,t+1(ẑ)

) ϵ−1
1+ζϵ dFj(ẑ)

,

which means that, for any z ∈ [z, z]:

θlt(z)
θht(z)

=

(
Pt+1Ch,t+1(z)
Pt+1Cl,t+1(z)

) ϵ−1
1+ζϵ

(62)

I already argued that, given the homothety of preferences, we must have ml,t+1(z) >

mlt(z) and mh,t+1(z) < mht(z) for every z ∈ [z, z]. This means that, for low-cash

agents, PtClt(z) = mlt(z) grows over time. For high-cash agents, on the other hand,

PtClt(z) = βPt−1Ch,t−1(z) for t ∈ {2, 3, ..., T − 1}, meaning that it decreases over time.

Thus, θl0(z)/θh0(z) ≤ θl,t+1(z)/θh,t+1(z) < θlt(z)/θht(z) for t ∈ {1, 2, ..., T − 1}. Due

to the homothety of preferences and the fact that θit(z) must integrate to 1, this means

that θ0(z) ≤ θl,t+1(z) < θlt(z) and θ0(z) ≥ θh,t+1(z) > θht(z). By (60), this implies

that Y0 ≥ Yt+1 > Yt with strict inequality for t = {1, ..., T − 1} and equality for t = T.

Finally, with this in mind, (55) implies that C0(z) ≤ Ch,t+1(z) < Cht(z).

Characterization of T:

Notice that PTChT(z) = βT−1P1Ch1(z) for z ∈ [z, z] by the first-order condition and

budget constraint of high-cash agents. Given that, as proven in Proposition 2, ChT(z) >

θ0(z)(1 + τA)M0/PT, we obtain the condition:

θ0(z)(1 + τA)M0 < βT−1P1Ch1(z) < βT−1θ0(z)(1 + 1τ>0τ)M0

βT−1 >
1 + τA

1 + 1τ>0τ
(63)

Let the maximum value of T that satisfies it be denoted by TMAX. Then, T ≤ TMAX.
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Characterization of prices:

Since low-cash agents always fully deplete their resources, (53) implies that:

ylt(z) = z
[(

ϵ − 1
ϵ

)
β

γ

] 1
1+ζ

meaning that hl,t+1(z) = hlt(z) = hlt(z′) for all periods and any z, z′ ∈ [z, z]. Moreover:

Pt+1Cl,t+1(z) = Rlt(z) = θlt(z)MC
t > θ0(z)MC

t

which means that pht(z) > plt(z) > pH(z, MC
t ) by (13) and the stability of hlt(z). This

implies that: (i) P(MC
t ) > PH(MC

t ); and (ii) low cash agents’ prices are proportional

to plt(z)ylt(z) = ml,t+1(z). As a result, plt(z) ≤ pl,t+1(z), with strict inequality for

t ∈ {1, 2, ..., T − 1}.

Lastly, by an argument already made in the proof of Proposition 1, one can show that:

 ∑
i∈{h,l}

ηi

∫ z

z

z
ϵ−1

1+ζϵ

Cit(z)
ϵ−1

1+ζϵ

dFi(z)


1+ζϵ
ϵ−1

>

(
ϵ

ϵ − 1

)
γYζ

t

for every t ∈ {1, 2, ...}, where the strong inequality follows from the fact that, by the

first-order condition of low-cash agents, Cl,t+1(z) > β Pt
Pt+1

Clt(z). We can plug this into

the aggregate price expression (47), which gives us:

Pt+1

Pt
> β

(
Yt+1

Yt

)ζ

≥ β, (64)

where the last inequality holds strictly for t ∈ {1, 2, ..., T − 1}, since Yt+1 ≥ Yt then.

A.4 Proposition 4

Lower interest rate, 1 ≥ qt > β:

I will show that T = ∞ is not possible through a simple proof by contradiction. As-

sume T = ∞. As the borrowing constraint only binds to low-cash agents, we have:

u′(Cht(z))
Pt

=
β

qt

u′(Ch,t+1(z))
Pt+1

and
u′(Clt(z))

Pt
>

β

qt

u′(Cl,t+1(z))
Pt+1

(65)

which hold for t ∈ {1, 2, ...} if qt > β. Thus, (47) can be re-written as Pt+1 >
(

β
qt+1

) 1
1+ζ Pt.

Since qt = qt+1, we have u′(Cht(z)) <
(

β
qt

) ζ
1+ζ u′(Ch,t+1(z)) < u′(Ch,t+1(z)) by (65).

This means that Ch,t+1(z) < Cht(z) for all t ∈ {1, 2, ...}.
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I will now show that limt→∞ Cht(z) = 0 for all high-cash agents. Assume, by

contradiction, that there is some high-cash agent with productivity z ∈ [z, z] whose

consumption does not converge to 0. Let εh,t+1(z) := u′(Ch,t+1(z)) − u′(Cht(z)) and

UMAX
hT (z) := limt→∞ u′(Cht(z)) < ∞. Naturally, since marginal utility converges to a

constant, limt→∞ εh,t+1(z) = 0. By (65), we must have:

lim
t→∞

Pt+1

Pt
= lim

t→∞

β

qt

(
1 +

εh,t+1(z)
u′(Cht(z))

)
=

β

qt
,

which uses the fact that qt is assumed to be constant. However, this implies that
β
qt

= limt→∞
Pt+1

Pt
>
(

β
qt

) 1
1+ζ , implying that β > qt, a contradiction. This means that

limt→∞ Cht(z) = 0 for every z ∈ [z, z]. However, since Cht(z) > Clt(z) ≥ 0 for as long

as high-cash agents do not fully deplete, this cannot occur. This proves that T < ∞.

Since (65) is never satisfied with equality for the low cash agent for qt > β, then the

economy must achieve the fundamental stationary equilibrium.

Higher interest rate, qt < β:

This case is straightforward, as we can make a similar argument as the one above. In

this case, there is excess bond supply, meaning that:

u′(Cht(z))
Pt

<
β

qt

u′(Ch,t+1(z))
Pt+1

and
u′(Clt(z))

Pt
=

β

qt

u′(Cl,t+1(z))
Pt+1

As qt+1 = qt < β, (47) now implies that Pt+1 <
(

β
qt+1

) 1
1+ζ Pt. A similar reasoning as

the one above shows that Cl,t+1(z) > Clt(z) for z ∈ [z, z] and t ∈ {1, 2, ...}, meaning

that Ch,t+1(z) < Cht(z) for a non-negligible mass of high-cash agents. We can, again,

prove by contradiction that limt→∞ Cht(z) = 0, since assuming otherwise implies that
β
qt

= limt→∞
Pt+1

Pt
<
(

β
qt

) 1
1+ζ , and, hence, β < qt. Again, Cht(z) > Clt(z) ≥ 0 proves

that these high-cash agents’ consumption cannot go to zero and, hence, T < ∞.

A.5 Proposition 5

Throughout this proof, I will use the homothety of preferences to facilitate the argu-

ments, meaning that, if any low-cash agent is constrained, all of them are. Moreover,

choices made by any high-cash (low-cash) agent are proportional to the choices made

by all the other high-cash (low-cash). Notice that the result holds trivially in the case

where (37) does not bind from the beginning, as the economy is already in the non-

fundamental stationary equilibrium. Thus, I will focus on the case of economies that

start off with constrained low-cash agents in period T = 1. In this case, (65) also holds.
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Notice that, since higher revenues may relax the borrowing constraint, the relative

revenue of low-cash agents is now given by:

θlt(z) =

[(
ϵ − 1

ϵ

)
z1+ζ

γ

Pt

Yζ
t

(
β

Pt+1Cl,t+1(z)
+ κ

Φlt(z)
βt

)] ϵ−1
1+ζϵ

where Φlt(z) := βt
(

qt
PtClt(z)

− β
Pt+1Cl,t+1(z)

)
is the multiplier of the collateral constraint

(37). Thus, we can write:

θlt(z)
θht(z)

=

[
Pt+1Ch,t+1(z)

β

(
β

Pt+1Cl,t+1(z)
+ κ

Φlt(z)
βt

)] ϵ−1
1+ζϵ

(66)

<

[
Pt+1Ch,t+1(z)

β

(
β

Pt+1Cl,t+1(z)
+

Φlt(z)
βt

)] ϵ−1
1+ζϵ

=

[
PtCht(z)
PtClt(z)

] ϵ−1
1+ζϵ

,

where the equality follows from the definition Φlt(z) and from (65). Moreover, using

(66) again, since Φlt(z) > 0, we have:

θlt(z)
θht(z)

>

[
Pt+1Ch,t+1(z)
Pt+1Cl,t+1(z)

] ϵ−1
1+ζϵ

≥ θl,t+1(z)
θh,t+1(z)

, (67)

where the second inequality holds with equality if the economy attains a stationary

equilibrium at t + 123. Moreover, plugging (2) into (3), and using (37), yields:

ml,t+1(z) = [1 − κ]Rlt(z), (68)

whenever the low-cash agent is constrained in period t.

Furthermore, this economy might be stuck in the zero lower bound (ZLB). To see

this, notice that, given the optimal consumption expenditure path {PtCht(z)}∞ for all

z ∈ [z, z], if ηh
∫ z

z
mht(z)−PtCht(z)

qt
dFh(z) > (1 − ηh)κ

∫ z
z Rlt(z)dFl(z) for any qt < 1 —

meaning that there is excess demand for bonds above the ZLB, — then we must have

qt = 1 and positive cash savings, i.e., sh,t+1(z) > 0. The remainder of the proof will be

divided into two cases: 1) qt < 1 and 2) qt = 1.

Out of the zero lower bound, i.e., qt < 1:

Naturally, cash savings are sh,t+1(z) = 0 for all z ∈ [z, z], meaning that MC
t = Mt. As-

sume, by contradiction, that qt ≤ β for any t ∈ {1, 2, ...} in which all low-cash agents

are constrained. By (65), our contradiction assumption implies that Pt+1Ch,t+1(z) ≥
PtCht(z) for z ∈ [z, z]. Thus, Pt+1Cl,t+1(z) ≤ PtClt(z) to ensure that expenditures sum

23In this case, Φlt(z) = 0 and either Pt+2Ci,t+2(z) = βPt+1Ci,t+1(z)/qt+1 or Pt+2Ci,t+2(z) =

Pt+1Ci,t+1(z) in the cases of, respectively, a non-fundamental and a fundamental stationary equilibrium.
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up to Mt+1 ≤ Mt
24. However, by (65), Pt+1Cl,t+1(z) > PtClt(z) for qt ≤ β, a contra-

diction. This implies that 1 > qt > β while low-cash agents are constrained. Equation

(67) implies that Rl,t+1(z) < Rlt(z) and Rh,t+1(z) > Rht(z).

Now, I will show that this economy must converge to a stationary equilibrium.

Again, I will make an argument by contradiction. Assume that convergence does not

happen in finite time. Thus, for any t ∈ {1, 2, ...}, qt > β and bl,t+1(z) > 0 for z ∈
[z, z]. This implies, by (65), that Pt+1Ch,t+1(z) = β

qt
PtCht(z) < PtCht(z). Let us define

ϑht(z) := PtCht(z) − Pt+1Ch,t+1(z). As proven before, consumption expenditures by

high-cash agents cannot collapse to zero, so limt→∞ ϑht(z) > 0 can be ruled out. I only

need to prove that limt→∞ ϑht(z) = 0 cannot occur. Assume it does by contradiction.

Then, the economy converges to a stationary equilibrium asymptotically.

Assume by contradiction that 1) the low-cash agents are still constrained in t + 1,

and 2) that the economy does not, at any point, go to the ZLB. Then, since Rl,t+1(z) <

Rlt(z), (68) implies that ml,t+2(z) < ml,t+1(z). Since Pt+2Cl,t+2(z) > Pt+1Cl,t+1(z),

we must have qt+2bl,t+3(z) < qt+1bl,t+2(z) by (2). However, by (37), bl,t+3(z) ≥
−κRl,t+2(z) > −κRl,t+1(z) = bl,t+2(z). This immediately implies that 1 ≥ qt+2 >

qt+1 > β, meaning that low-cash agents are also constrained at t + 2.

By induction, this economy must remain constrained forever and, limt→∞ qt > β.

This means that this economy does not converge to a non-fundamental stationary

equilibrium. Furthermore, the fact that ml,t+1(z) < mlt(z) implies that limt→∞ mlt(z) <

limt→∞ mht(z), meaning that this economy does not converge to a fundamental sta-

tionary equilibrium either. This contradicts the fact that limt→∞ ϑht(z) = 0, proving

that the economy either returns to the stationary equilibrium at t + 1 or that it eventu-

ally achieves the ZLB in finite time.

To rule out the possibility of the economy achieving the ZLB, I will show that low-

cash agents are less constrained at t + 1 than at t. To begin, consider an economy with

a nominal interest rate that is fixed at qt and with the same initial monetary holdings

distribution. I will denote it with the superscript FI — for “fixed interest rate”. To

begin, I will show that mFI
l,t+1(z) > mFI

lt (z) for every t and z ∈ [z, z] by means of a

backwards induction argument. As shown in Proposition 4, there is a time T in which

PFI
T CFI

hT(z) = mFI
hT(z) and, hence, mFI

h,T+1(z) < mFI
hT(z) and mFI

l,T+1(z) > mFI
lT (z). Assume

that, for an arbitrary t ∈ {2, 3, ..., T − 1} in the transition path, mFI
h,t+1(z) < mFI

ht (z) and

mFI
l,t+1(z) > mFI

lt (z).

24Here, I am allowing the economy to go the ZLB in the next period, in which case, Mt+1 < Mt
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By contradiction, assume that mFI
ht (z) ≥ mFI

h,t−1(z). In this economy, the borrowing

constraint cannot be relaxed by setting a lower price. As a result:

θFI
lt (z)

θFI
ht (z)

=

[
PFI

t+1CFI
h,t+1(z)

PFI
t+1CFI

l,t+1(z)

] ϵ−1
1+ζϵ

Since, by (65), we must have PFI
t CFI

ht (z) < PFI
t−1CFI

h,t−1(z) and, since MC,FI
t = Mt =

MC,FI
t−1 , PFI

t CFI
lt (z) > PFI

t−1CFI
l,t−1(z). This immediately implies that θFI

lt (z)
θFI

ht (z)
<

θFI
l,t−1(z)

θFI
h,t−1(z)

and, thus, RFI
ht (z) > RFI

h,t−1(z). By our contradiction assumption and PFI
t CFI

ht (z) <

PFI
t−1CFI

h,t−1(z), (2) implies that bFI
h,t+1(z) > bFI

ht (z). By (3), this means that:

0 > mFI
h,t+1(z)− mFI

ht (z) = RFI
ht (z) + (1 − qt)bFI

h,t+1(z)− PFI
t CFI

ht (z)

> RFI
h,t−1(z) + (1 − qt−1)bFI

ht (z)− PFI
t−1CFI

h,t−1(z)

= mFI
ht (z)− mFI

h,t−1(z),

where we have used the fact that qt = qt−1 in the fixed interest rate economy. This

is a contradiction, which proves that mFI
h,t+1(z) < mFI

ht (z) and mFI
l,t+1(z) > mFI

lt (z)

for an arbitrary t. Now, assume by contradiction that ml,t+1(z) ≤ mlt(z) in the con-

strained economy. Then, Pt+1Cl,t+1(z) < PFI
t+1CFI

l,t+1(z), meaning that Pt+1Ch,t+1(z) >

PFI
t+1CFI

h,t+1(z). However, this means that:

θFI
lt (z)

θFI
ht (z)

<

[
Pt+1Ch,t+1(z)
Pt+1Cl,t+1(z)

] ϵ−1
1+ζϵ

<
θlt(z)
θht(z)

.

Since MC
t = Mt = MC,FI

t , this implies that Rlt(z) > RFI
lt (z). Moreover, notice that we

must also have β
qt

PtCht(z) > β
qt

PFI
t CFI

ht (z). Since monetary holdings are the same at t

in both economies, then qtbh,t+1(z) < qtbFI
h,t+1(z) and, thus, bl,t+1(z) > bFI

l,t+1(z). How-

ever, this means that ml,t+1(z) = Rlt(z) + bl,t+1(z) > RFI
lt (z) + bFI

l,t+1(z) = mFI
l,t+1(z) >

mlt(z), a contradiction. This proves that ml,t+1(z) > mlt(z), implying that low-cash

agents cannot become more constrained at t + 1, and, therefore, the economy cannot

go to the ZLB. As a result, the stationary equilibrium must be attained at t + 1.

Zero lower bound, i.e., qt = 1:

If the economy remains in the ZLB forever, by Proposition 2 and Proposition 4, it must

eventually return to a fundamental stationary equilibrium. In this case, we must have

bl,T+1(z) = 0, optimal (unrealized) bond sales satisfying b∗l,T+1(z) < −κR∗
lT(z), and

β
qT

mhT(z) ≤ θ0(z)MT+1 for z ∈ [z, z]. However, it can go to an equilibrium with 1 >

qt ≥ β before that. In fact, there must be a period T′ where sh,T′+1(z) = 0 ∀z ∈ [z, z].

If (37) still binds then, we must have 1 > qT′+1 > β; and, if it does not, we have

qT′+1 = β.
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Non-fundamental stationary equilibrium:

If a non-fundamental stationary equilibrium is achieved at T, then, for high-cash agents:

θ0(z)MT+1 < PT+1Ch,T+1(z) =
β

qT
PTChT(z) <

β

qT
mhT(z) = mhT(z),

where the first inequality comes from the fact that high-cash consumption expendi-

ture must be higher than their monetary holdings at the fundamental stationary equi-

librium. Notice that the expression above relies on the homothety of the preferences

since all high-cash agents decide to fully deplete at the same time. However, mhT(z) >

θ0(z)MT+1 is trivially satisfied. So, the economy achieves a non-fundamental sta-

tionary equilibrium at T if, and only if, the low-cash optimal bond sales satisfies

b∗l,T+1(z) ≥ −κR∗
lT(z). By (30) and (31), this requires mlT(z) ≥ (1 − κ)R∗

lT(z) for

z ∈ [z, z].

Fundamental stationary equilibrium:

The economy goes to the fundamental stationary equilibrium at T if high-cash agents

are not willing to buy bonds. They decide to fully deplete if:

θ0(z)MT+1 = PT+1Ch,T+1(z) ≥
β

qT
mhT(z) >

β

qT
θ0(z)MT+1.

Notice that it can only occur if qT > β. Even though no borrowing occurs at T, this

would happen if the optimal bond sales could not be achieved, that is, b∗l,T+1(z) <

−κR∗
lT(z) and, hence, mlT(z) < (1 − κ)R∗

lT(z) for z ∈ [z, z].
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B Outstanding Graphs

(a) Connected agents’ prices, pct(Z) (b) Unconnected agents’ prices, put(Z)

Figure 6: Decomposition of individual prices in the full enforcement economy

Figure 7: Comparison of monetary holdings, mt, across agents

Notes: Connected (C) and unconnected (U) cases. Subscripts denote: baseline (B), full enforcement (F), and zero interest rate (Z).
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(a) Path of output, Yt (b) Path of price, Pt (c) Money in circul., MC
t

(d) Total Factor Productivity (e) Gini indexes (f) Indiv. consumption, Cit(z)

(g) Individual output, yit(z) (h) Individual prices, pit(z) (i) Indiv. revenues, Rit(z)

Figure 8: Paths for aggregate and individual variables under a negative shock

Notes: Connected (C) and unconnected (U) cases. Subscripts denote: baseline (B), full enforcement (F), and zero interest rate (Z).

For the Gini indexes, G ∈ {C, R, M} stand for consumption, revenue, and money holdings.
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(a) Path of output, Yt (b) Path of price, Pt (c) Money in circul., MC
t

(d) Total Factor Productivity (e) Gini indexes (f) Indiv. consumption, Cit(z)

(g) Individual output, yit(z) (h) Individual prices, pit(z) (i) Indiv. revenues, Rit(z)

Figure 9: Paths for aggregate and individual variables under CRRA utility

Notes: Connected (C) and unconnected (U) cases. For the Gini indexes, G ∈ {C, R, M} stand for consumption, revenue, and

money holdings.

60



(a) Path of output, Yt (b) Aggregate price, Pt (c) Money in circulation, MC
t

(d) Total Factor Productivity (e) Gini indexes

(f) Indiv. consumption,

Cit(Z)

(g) Individual output, yit(Z) (h) Individual prices, pit(Z) (i) Indiv. revenues, Rit(Z)

Figure 10: Paths for aggregate and individual variables under different Frisch elastici-

ties, 1
ξ

Notes: Connected (C) and unconnected (U) cases. For the Gini indexes, G ∈ {C, R, M} stand for consumption, revenue, and

money holdings.
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(a) Path of output, Yt (b) Aggregate price, Pt (c) Money in circulation, MC
t

(d) Total Factor Productivity (e) Gini indexes

(f) Indiv. consumption,

Cit(Z)

(g) Individual output, yit(Z) (h) Individual prices, pit(Z) (i) Indiv. revenues, Rit(Z)

Figure 11: Paths for aggregate and individual variables for different values of η and τ

Notes: Connected (C) and unconnected (U) cases. For the Gini indexes, G ∈ {C, R, M} stand for consumption, revenue, and

money holdings.
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(a) Path of output, Yt (b) Aggregate price, Pt (c) Money in circulation, MC
t

(d) Total Factor Productivity (e) Gini indexes

(f) Indiv. consumption,

Cit(Z)

(g) Individual output, yit(Z) (h) Individual prices, pit(Z) (i) Indiv. revenues, Rit(Z)

Figure 12: Paths for aggregate and individual variables for different values of η and

τA

Notes: Connected (C) and unconnected (U) cases. For the Gini indexes, G ∈ {C, R, M} stand for consumption, revenue, and

money holdings.
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(a) Path of output, Yt (b) Aggregate price, Pt (c) Money in circulation, MC
t

(d) Total Factor Productivity (e) Gini indexes

(f) Indiv. consumption,

Cit(Z)

(g) Individual output, yit(Z) (h) Individual prices, pit(Z) (i) Indiv. revenues, Rit(Z)

Figure 13: Paths for aggregate and individual variables for different values of η and
Mc0
M0

Notes: Connected (C) and unconnected (U) cases. For the Gini indexes, G ∈ {C, R, M} stand for consumption, revenue, and

money holdings.
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C Outstanding Tables

Quarter ∆Mt

1999-Q4 10.0036%

2008-Q4 83.1813%

2009-Q4 12.4917%

2011-Q1 18.7556%

2011-Q2 10.5707%

2020-Q1 13.3256%

2020-Q2 28.8095%

2021-Q1 12.1483%

2022-Q2 -10.2375%

Table 3: Shocks to the U.S. monetary

base of more than 10%

Source: Board of Governors of the Federal

Reserve System (US), retrieved from FRED,

Federal Reserve Bank of St. Louis

Fraction of Connected Model Constant output No inequality

Mc0/M0 = 2.06 -5.5304% -5.3758% -0.1853%

Mc0/M0 = 1 -0.4016% -0.217% -0.1853%

Mc0/M0 = 0.6 6.6595% 6.8873% -0.1853%

The second column shows the welfare in the economy that does not receive a mon-

etary shock. The third column contains the values for the welfare function under

the benchmark specification of the baseline economy. The fourth column presents

the counterfactual exercise of assuming that output is constant at the initial level,

but keeping the degree of inequality across the connected and unconnected agents.

The last column stands for the opposite exercise: it removes inequality between con-

nected and unconnected agents with the same productivity but maintains the fall in

output.

Table 4: Counterfactual welfare analysis of the baseline economy
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Fraction of Connected Model Counterfactual

Mc0/M0 = 2.06 -5.0228% -0.1025%

Mc0/M0 = 1 -0.0020807% -4.14e-05%

Mc0/M0 = 0.6 6.8995% 0.13286%

The second column shows the welfare in the economy that does

not receive a monetary shock. The third column contains the val-

ues for the welfare function under the benchmark specification of

the full enforcement economy. The counterfactual corresponds to

the exercise of assuming that, after period T, as the baseline econ-

omy returns to equilibrium, the full enforcement economy returns

as well.

Table 5: Counterfactual welfare analysis of the full en-

forcement economy

Fraction of Connected Model Baseline output Baseline inequality No inequality

Mc0/M0 = 2.06 -5.0894% -5.2367% -6.0506% 0.0025%

Mc0/M0 = 1 -0.1006% -0.2876% -0.2276% 0.0025%

Mc0/M0 = 0.6 6.755% 6.5109% 7.8565% 0.0025%

The second column shows the welfare in the economy that does not receive a monetary shock. The third

column contains the values for the welfare function under the benchmark specification of the zero interest

rate economy. The fourth column stands for the exercise of keeping the degree of consumption and labor

inequality in the zero interest rate, but imposing that the aggregate output be equal to the one in the baseline

economy. The penultimate column stands for the opposite exercise: keeping the output level, but modifying

consumption inequality between connected and unconnected. The last column stands for the counterfactual

removal of inequality across connected and unconnected agents with the same productivity.

Table 6: Counterfactual welfare analysis of the zero interest rate economy

Model η = 0.1 η = 0.27 η = 0.5 η = 0.75

Baseline -0.9380% -0.6945% -0.4560% -0.2130%

Full enforcement -0.0234% -0.0070% -0.0026% -0.0009%

Zero interest rate -0.3315% -0.1737% -0.1101% -0.0692%

Table 7: Welfare analysis for different values of η and τ

Model η = 0.1 η = 0.27 η = 0.5 η = 0.75

Baseline -0.1033% -0.2591% -0.3905% -0.3418%

Full enforcement -0.0009% -0.0018% -0.0022% -0.0015%

Zero interest rate -0.0276% -0.0650% -0.0971% -0.1026%

Table 8: Welfare analysis for different values of η and τA
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Model T Y1−Y0
Y0

P1−P0
PT−P0

Cc1(Z)−Cu1(Z)
C0(Z)

Consumption equivalent

Model 3 -1.521% 82.382% 12.359% -5.530%

Negative Shock 3 -1.441% 119.983% -10.810% 5.085%

CRRA Utility

IES = 0.5 2 -2.025% 79.267% 10.929% -13.491%

IES = 2 2 -1.029% 89.662% 14.456% -3.130%

Inverse Frisch Elasticities

ζ = 0 2 -3.719% 99.946% 11.303% -5.733%

ζ = 0.5 3 -2.187% 88.549% 12.19% -5.589%

ζ = 1 3 -1.521% 82.382% 12.359% -5.530%

ζ = 2 3 -0.948% 77.318% 12.535% -5.475%

Access to Financial Markets and Fixed Aggregate Shock

η = 0.1 8 -1.236% 29.691% 19.614% -0.938%

η = 0.27 5 -1.850% 55.750% 14.776% -0.695%

η = 0.5 3 -1.663% 77.867% 12.616% -0.456%

η = 0.75 2 -0.768% 92.303% 11.391% -0.213%

Access to Financial Markets and Fixed Idiosyncratic Shock

η = 0.1 4 -0.361% 48.849% 6.068% -0.103%

η = 0.27 4 -1.003% 62.927% 8.455% -0.259%

η = 0.5 3 -1.504% 78.666% 11.578% -0.391%

η = 0.75 2 -1.103% 91.509% 14.622% -0.342%

The columns show, from second to last: 2) the moment the economy returns to the stationary equilib-

rium; 3) the percentage variation in aggregate output; 4) the percentage variation in the aggregate price

relative to the final stationary equilibrium; 5) distortion in consumption of high- to low-cash agents with

average productivity relative to the stationary equilibrium; and 6) the short-run consumption equiva-

lent.

In line with the text, the productivity is assumed to not differ between the average connected and

unconnected agent. This is why the welfare losses are an order of magnitude lower than for the other

cases.

Table 9: Summary of sensitivity exercises
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